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CHAPTER I

INTRODUCTION

Enclosed waveguiding structures have long been of great

importance in the transmission of high-frequency electro-

magnetic energy. The electromagnetic properties of uniform,

axial waveguides are generally well understood, but practical

applications introduce discontinuities and transition regions

into waveguides which often significantly affect their re-

sponse. In the particular case of discontinuities which are

limited to the plane transverse to the direction of propa-

gation, an impedance mismatch and a region of reactive energy

storage are normally introduced into the waveguide. Such

effects are usually undesirable, but properly designed dis-

continuities can provide very desirable impedance-matching

devices and resonating cavities.

Analyses of planar waveguide discontinuities quickly fol-

lowed the beginning of efforts to develop useful radio-fre-

quency and microwave devices utilizing waveguiding structures.

Low-frequency techniques such as field mapping yielded useful

results for transverse electromagnetic (TEM) mode propagation

in coaxial and parallel-plate waveguides. The effective

1

iA
Nt



treatment of discontinuities when higher-order modes exist

in coaxial lines and for waveguides supporting transverse

electric (TE) and transverse magnetic (TM) modes was much more

difficult. A discontinuity requires the local contributions

of an infinite set of modes to satisfy the electromagnetic

boundary conditions. Mathematical complexity prevented early

analytical treatments from considering more than one or two

of the higher-order modes. The most accurate of the early

treatments was based upon variational solutions to susceptance

expressions which had been developed from integral equations.

Very useful expressions for the susceptances of a large variety

of waveguide discontinuities were derived by Julian Schwinger

and a capible group of associates in the 1940s. Many of the

results of this work were compiled by Nathan Marcuvitz into

the well-known Waveguide Handbook, Ref.[l]. This work is of

such quality that even today it remains the treatment of

choice for most applications. Very good descriptions of the

techniques employed to derive these expressions have been

presented in books by Schwinger and Saxon, Ref.[2], Collin,

Ref.[3], and Lewin, Refs.[4], [5], and (6]. The earliest

published work on discontinuities in coaxial waveguides was

by J. R. Whinnery and H. W. Jamieson, Ref.47], and Whinnery,

Jamieson, and Robbins, Ref.[8]. These investigators used an

approach suggested by W. C. Hahn in 1941 which involved com-
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putation of the terms of a Fourier expansion of the field in

the discontinuity to calculate the capacitance of coaxial dis-

continuities. Computation of the terms of the series was

sufficiently difficult that Whinnery, et al., used only the

first four higher-order modes to obtain results that were

later shown to be accurate to within five per cent.

The variational technique employed by the above authors

is included in the collection of mathematical solution pro-

cedures which R. F. Harrington has identified in his Field

Computation by Moment Methods, Ref.(91. This variational

approach is identical to a one-term Galerkin's solution,

Ref.[9], where the assumed value of the unknown field dis-

tribution in the discontinuity serves as both the basis and

testing function. As indicated earlier, this approach is

very effective for dominant mode operation of waveguides when

frequencies are low enough to prevent propagation of higher-

order modes. Under this frequency constraint, susceptance re-

sults obtained from both analyses and experimental measure-

ments during the course of this investigation have shown re-

markable agreement with values calculated from expressions in

the Waveguide Handbook. These latter calculations benefit

from the characteristic of such variational solutions in that

a first-order change in the assumed field distribution in the

discontinuity produces only a second-order variation in the

calculated susceptance. The field in the vicinity of the dis-

3 I | llm li T - " "



continuity can be calculated from the same assumed field dis-

tribution, but the field expressions are not variational and

thus, do not share the property whereby a first-order error in

the assumed field distribution produces a second-order error

in the calculated result.

The treatments of waveguide discontinuity problems which

employed variational techniques required a liberal amount of

ingenuity because such problems yielded solutions very

grudgingly. The increasing capability of the digital computer

opened new avenues of approach and investigators began to de-

velop techniques which took advantage of this tool. P. I.

Somlo used the computer to calculate more terms in the Hahn

series approach used by Whinnery, et.al., Refs.[10] and [11].

D. Woods, Ref.[12], used interpolation on Somlo's results to

obtain a further improvement in accuracy and A. Jurkus pro-

vided improvements to Somlo's code, Ref.[13]. E. W. Risley,

Refs.[14] and [15], adapted the Rayleigh-Ritz procedure used

by Schwinger, et al., to solution by a computer and obtained

both upper- and lower-bound solutions for the capacitance of

the coaxial-to-circular waveguide junction.

A number of more recent investigations has employed

least-squares techniques to minimize the error in satisfying

boundary-conditions at the discontinuities. The error results

from the fact that only a finite number of higher-order modes

is used in the field expansions at the discontinuities.

4



Investigations using such methods have been reported by J. B.

Davies, Ref.[16], Davies and M. Razaz, Ref.[17], H. Oraizi

and J. Perini, Ref.[18], R. Jansen, Ref.[19], and H. J. A.

LaRiviere and Davies, Ref.[20]. The results reported in Refs.

[16] - (20] are largely for general waveguide discontinuities

with occasional specialization of the technique to coaxial

waveguides as in Ref.[17].

All of the investigations mentioned thus far were direc-

ted toward the computation of discontinuity capacitance and

some have obtained very good levels of accuracy. Razaz and

Davies claim an error of ±0.1 femtofarads in their calcula-

tions for the capacitance of a coaxial-to-circular waveguide

junction, Ref.[21]. None of these approaches is suitable

for treating situations where higher-order modes may propa-

gate. Alvin Wexler, Ref.[22], has developed a modal analysis

technique for treating waveguide discontinuities which in-

volves selecting the amplitudes of normal modes so as to

satisfy boundary conditions at the discontinuity. The method

is elegantly developed and allows the treatment of as many

modes as desired. It has the computational disadvantage of

requiring the solution of a set of N+l linear equations to

treat N modes. The method can also treat coupled discontinu-

ities, however, each discontinuity must be treated individually

and the procedure must begin with the discontinuity most

distant from the excitation.

5



All the solution techniques mentioned thus far begin

with the same expressions for the field in the waveguide. It

is the approach to approximating or obtaining solutions for

the transverse field in the apertures of the discontinuities

that provides the differences among the methods. The primary

objective of this investigation is the development and vali-

dation of a frequency-independent capability of calculating

the electromagnetic properties of coaxial waveguide disconti-

nuities which is both computationally efficient and accurate.

Such a method necessarily includes the treatment of higher-

order modes, but it is done in such a way that it allows for

general excitation of the waveguides. The method presented

possesses a significant advantage over earlier approaches in

that a series-convergence technique is employed which allows

the recovery of essentially all the higher-order mode con-

tributions at a given discontinuity even though a finite

number of series terms is computed. The accuracy of the

method can be controlled (within computational errors) by

the number of basis expansion pulses and higher-order mode

terms considered in the solution. A very useful aspect of

this approach is the capability of combining two or more

discontinuities into simple or complex, one- or two-port

cavities as illustrated in Figure 1.

The formation and analytical treatment of simple and

partitioned cavities are considered extensively in the body

6



of this report. Also presented are the results of a sub-

stantial experimental program designed to provide validation

for the analysis. Two sets of coaxial cavities with differing

dimensions were constructed and the internal field was meas-

ured for one- and two-port cavities of simple and parti-

tioned configurations. The input admittance of the two-port

cavity was measured. Extensive comparisons of measured

data with analytical results are presented which, in con-

junction with a discussion of possible experimental error,

lead to quantitative evaluations of the accuracy and useful-

ness of the analytical approach.

Analytic formulations for the field or electromagnetic

potentials within a cavity frequently include expressions

that contain three infinite series. For coaxial cavities

considered in this effort, the original excitation is always

assumed to consist of TEM or TMOn modes only. This constraint

eliminates any variation in the azimuthal coordinate and

simplifies the appropriate expressions to two infinite series.

It is mathematically (and computationally) expedient to treat

these cavities from a waveguide, i.e., traveling wave, point

of view and to consider the front and rear boundaries of the

cavities as planar waveguide discontinuities. The axial and

radial eigenvalues in this approach are related in such a

manner that the formulation requires only one infinite series

for a complete set of eigenfunctions. The derivation of the

7
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magnetic vector potential and the resulting field expressions

is presented in Chapter II.

If the waveguide approach is used, it is very effective

to think of the traveling waves as penetrating apertures in

the discontinuities. This concept allows utilization of

existing techniques for calculating aperture penetration, in

particular, treating the aperture field as the unknown

quantity of interest since it is common to the adjoining re-

gions. All formulations in this report treat the transverse

electric field in the aperture as the unknown quantity. It

is the objective, therefore, to obtain solutions for the

aperture field for each discontinuity or partition used to

form a cavity structure. When this approach is used, it is

imperative to recognize any singular behavior of the aperture

field and then to develop a numerical solution technique

accordingly. In the following chapters integral equations

are developed for progressively more complex configurations

of discontinuities and details are given for appropriate

numerical solution techniques. The results of the comple-

mentary experimental measurements program serve to corrob-

orate the analytical results.
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CHAPTER II

ROTATIONALLY SYMMETRIC JUNCTION OF

TWO DISSIMILAR COAXIAL WAVEGUIDES

A. Introduction

The effects on the propagating modes produced by a dis-

continuity in a coaxial waveguide are a function of the re-

sulting field distribution in the vicinity of the discontin-

uity. The local field distribution is a modification of the

propagating modes and, in general, an infinite number of

higher-order modes is required to satisfy boundary conditions

at such a discontinuity. For a discontinuity confined to a

two-dimensional plane, a knowledge of the field in this

"aperture plane" is sufficient for determining the field

everywhere. From the knowledge of the aperture field, the

resulting effects on any propagating modes can be determined

and, if desired, microwave circuit representations of the

discontinuity can be derived. In this chapter, an integral

equation is formulated for the aperture electric field of the

generalized geometry depicted in Figure 2. This integral

equation is then specialized to the simpler geometries of

Figures 3 and 4 and is subsequently applied to a one-port

10
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coaxial cavity.

B. Derivation of Expressions for Field Components

An integral equation suitable for numerical solution is

obtained by developing expressions for each of the field com-

ponents in the regions either side of the discontinuity and

then enforcing continuity of the transverse field components

across the aperture in the discontinuity. These expressions

are derived from the appropriate operations on a vector

potential of the magnetic and/or electric type. The geometry

under consideration is azimuthally symmetric and, with the

assumption of similar symmetry of the excitation, all magnetic

field components are transverse to the axial coordinate and,

therefore, the magnetic vector potential suffices for the

complete description of the field. This potential is the

solution to the vector wave equation

(V 2 + k 2) I = , (1)

subject to the appropriate boundary conditions and where k is

the wave number of the medium. A coaxial geometry with

azimuthally-symmetric excitation has only axially-directed cur-

rents and, therefore, only the axial component of the magnetic

vector potential is necessary to derive the complete field.

The geometries treated in this investigation have many surfaces

that support p-directed currents; however, it is shown in

12



Appendix A that, for azimuthally-symmetric excitation, the

field derived from the z-directed vector potential is still

complete. The vector potential equation is reduced to the

scalar equation

(V2 + k 2 ) A (p,p,z) = 0.

Since the axial component of vector potential is independent

of 0, A may be represented by

z

A z(p, z) = R (p) Z(z).

The axial function Z(z) satisfies the harmonic equation

d2Z + k2 = 0 (2)
dz2  z

which has the solution

Z(z) = A e- Jkz
z + B ejkzz

where A and B are arbitrary constants. The radial function

R(p) is a solution of

2 d2i dR 2 2 R0.P - + P ap" + kPp R-0 3
dp(3

The parameters kz and k are related byz p
2= k 2 _ k2  (4)
z p

13
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Equation (3) is a zero-order Bessel's equation with the

solution

R(p) = C J0 (k p) + D N0 (k P)

where J0 is the zero-order Bessel function of the first kind,

N is the zero-order Neumann function and C and D are arbi-

trary constants. Enforcement of the boundary condition that

the tangential (or z) component of electric field be zero at

the surface of the inner conductor yields the function

R(p) = E [N0 (kpa)J0 (kPp) - J0 (kpa)N0 (k pP)]

where a is the radius of the inner conductor and E is an ar-

bitrary constant. The second boundary condition requires the

z component of the electric field to be zero at the surface

of the outer conductor and results in the expression

R(p) = 0n(p) = N0(yna)J0 (Np) - JO(y a)N (Ynp )  (5)

where the Yn are the infinite set of k which satisfy

0n(b) = N (Na)J 0 (Ynb) - J(na)N0(Tnb) = 0, n-1,2,... (6)

where b is the radius of the outer conductor. The new rep-

resentation for k is an where

n n

14



For the special case k = 0, the solution to Eq. (3) is

Rip) = B' lnp + C'

where the constant C' can be discarded. In this case,

kz = k which yields the special case

ATEMP,z) b+ e- j  + b ln e jkz

where, as indicated, ATEM is the vector potential for the
z

TEM mode. The complete expression for the vector potential

is given by

A (PZ) = b +in e- jkz + b- lnp ej k z
Az(0 -b 0 0

+ [ (b+ e-Janz + b- eJanz) n (P) (9)

n=l n

The wave number an for the higher-order modes may be

either real or imaginary depending on the relative magni-

tudes of k and yn. For the former condition, the mode would

propagate and, for the latter, it would be cutoff. Proper

root selection is required for each case to assure conser-

vation of energy. The following selections are made

a= V/ k Y2k 2 > Y2 (10a)

2 2  2 2an = -J Yn _ k y > k(10b)
n Tn nk, >

In Eqs. (10a&b), k is assumed to be a real number.

15I
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The electric field is calculated from the expression

E=-j ~2
E = -j 2 Az + 77"(2A z) ] •

The radial component of the electric field is given by

E 2A z
p -Jz

+ e -Jkzw b0 ejkZ

+ • .aZ] ( P+ an(-bn e- Z+benz) dnn(+) (ii)
n=l n dp

The axial component of the electric field is given by

W k' 2 2

k - az 2
I = - b+  ' ]a en z )  np (12)

E (k2 -a)(b e nZ +b e (p)
Ek n n n n

The magnetic field is calculated from

-1. 1
H = 7x(2A

where U is the permeability of the dielectric medium. The

azimuthal component of magnetic field is given by

H z

16



z + e- jkz 
1 b- ejkz

I0 P P4 0 p

1 11(bn e-Jnz '+ bn e JnZ) d n (P) (13)
P -= n dp

At this point, the constants used in defining the field

components are redefined to make the TEM terms agree with

physical concepts so that the sign conventions on the TEM

and the higher-order mode terms agree, e.g.,

+ k +
b; = - B , (14a)

b -= k Bo  (14b)

+ k 2  B+

bn = wa B n (14c)

bn - -B. (14d)

The field components are now given by

E +B ejkzB eikz C + (B -ja z B ja z do
0  P p n=l n n d

Ez n n (B4 e an - Bn eianZ) o
n= a n

and

H B+ e
- jk z - B_ ejkz + 0 - (B+ Jz- -neJnnZ) jazn ,d

e0 k e F r n Bn )0 p n=1 n dp

17



where n is the characteristic impedance of the dielectric

medium,

(15)

C. Field Expressions for Two Dissimilar Coaxial Regions

The analysis of the junction of two coaxial regions with

differing inner and/or outer radii and/or dielectric media

requires separate field expressions for each region. Such a

junction is shown in Figure 2 which also displays schematic

representations of the incident and reflected waves in each

region. In this figure and others in the report, the assump-

tion is made that the truncated sections of waveguide have

matched terminations (or equivalently, extend to ± infinity).

Under such an assumption, all incident waves represent know

sources with no reflected components. The junction in Fig-

ure 2 is arbitrarily located at z = s in order to retain gen-

erality in the field expressions. For single discontinuities,

specifying z - 0 in the resulting equations will simplify the

mathematics somewhat.

For the region z < s, with media characteristics

k_ = w (16a)

and

1__ , (16b)

the field components are

18



+eJk_z eJk_z B e Z dS- + I (B e- j nz + B n n ,(17)

E o P 0 n=1 n n dp

2
L + jac j zEz  (B e-nz - e en )P (18)

n=l n n n

and
H= B + e-Jk-z B e + -z k _(B+ e- j nZ - B- e n z )dOn

0 n 0 IT-P -nnl an n dp

where (19)

Dn(P) = N0 (Yna)J 0 (YnP) - JO(Yna)N0 (YnP) (20)

and
a 2 = k 2 _ y 2 (21)

n - n

The yn are the roots of the transcendental equation

D (b) = N 0 (YNa)J 0 (YNb) - J 0 (Tna)N 0 (Ynb) = 0 , (22)

where a and b are the inner and outer radii of the coaxial

region for z < s.

For the region z > s, with the dielectric media char-

acteristics
k+ = W A (23a)

+ + +

and

1 +1k ,(23b)

the field components are

19
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E+  + e-J+ z  e k+z+ ] Bzd
Ep =C 0  P + CO ek + n (Cn e-JnZ + c n eJBnnZ)d n,( 2 4 )

00 2

+ n1 +. -j
nEl n C n CnenI (25)

and •j z k+ c

HO = e-k+z C- kz + C - -jB n z  e anZ dn0% n+P 0 + n l n n--+- + n n n e -

where (26)

Tn(p) = N0 (Xnc)J 0 (X P) - J0(Anc)N 0 (Xnp) (27)

and 2 2 2
Bn = k+ - (28)

nn

The X are the roots of the transcendental equation

Tn(d) = N0 (n c)J0 ( nd) -J0(AnC)N0(Xnd) = 0 , (29)

where c and d are the inner and outer radii of the coaxial

region for z > s. Note that the annular disk attached to

the inner conductor has no effect on the field definitions.

The disk merely imposes a boundary condition to be enforced

in the plane of the aperture.

D. Evaluation of Constants in the z < s Region

The unknown constants of Eqs.(17)-(19) are evaluated in

terms of integrals over the unknown aperture electric field

by application of Fourier series techniques. The first step

20



in evaluating B; and B0 is to integrate both sides of Eq. (17)

over the z = s plane (illustrated in Figure 2) with respect

to p which yields

b E dp = B+ e-Jk-s 1b 
d o + B0 ejk s 1b dp

a to0 fa P a

+bn l (B + e- j Cn S + B-n eJDan S)- d Dn d
f a n dp

After evaluation of the integrals on the right-hand side of

the equation, one obtains

aE_ dp = e-(B; 0jk s + B0 ejks
) lnPlb

+ (B+ e-jns +- e Jns b(P)lb

n=l n n n a

Note that Dn (b) = 0 from Eq.(22) and that Dn (a) = 0 from

the definition in Eq. (20); therefore

B+ e - jks + B_ ejks b b _dp (30)0 0 e ln__ ap
a

The presence of the perfectly conducting disk in the aper-

ture affects the value of E over the aperture.

0 , pc(a,h)
E (31)P E 0, pE (h,b)

With the constraint of Eq.(31), Eq.(30) becomes

21



B + e-jk~s + B- jks 1 bbE'dp .(32)0 B0 en -h
a

The B +e-kzterm in Eq. (17) represents a TEM wave traveling0 p

in the +z direction. This wave is the only such positive

traveling TEM wave for z < s and, hence, is identified as the

known excitation. The subject term may be expressed as

B+ e jk-z v~ +-jk-z
0 p bA p

a

The quantity V +is the voltage (complex in general) of the

excitation applied to the coaxial waveguide in the z < s

region and is defined by

= _.b EPdP (33)
a

The value of V+is normally a specified parameter of the

problem. The following definitions may now be obtained:

B + Vs (34a)
a

and -E p b

B_= e _ 0d -V+_kjks(3b

0  -n =h

a

The higher-order mcde coefficients are determined in a sim-

ilar manner. The first step is to multiply Eq.(17) by p im
dp

and integrate with respect to p over the z rs plane.
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dOm + ejk s d d B; ejk sf ddp 0 0f dp =B 0 e dp + j e d p

a dp a dp a dp

+(bP a + B a s d(P d P
+ (B+ e-+ns B_ eans) m n dp , m=l,2,...

a n=l dp dp

The integrals multiplied by B and B have zero value since

4 (b) = m(a) = 0. From orthogonality relations described

in Appendix D, the last integral has zero value except when

m = n:

F 0, m #n

fhP dp b(B+ e- ja ns + B_ e ja n s) (d 1n Ua n2 d dp m n
a n d3

This yields:

B+ e-Jan s + B a en s  1 b 0 d(n
BB e b pd n 2 d p hE p  -d p n dp (35)

na nd 2

The integral in the denominator of the right-hand side is

the normalization integral for the particular Fourier-Bessel

series used in these field expansLons. The integral is rep-

resented by and has the value (from Appendix D):
b22

2  Yn 2 2Mn 2 Y [ 0nln(Yb - i Ya)N ( b) (36)

Eq.(35) can now be written in a more compact form:

23
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+ eJan s B-jn
s  

1 fbo d

B e- n + eh - __n dp. (37)n n 2 hP ddp
n

+ hAs indicated earlier, B0 and B are the complex coef-

ficients of the TEM waves in Region 1 which are traveling

in the positive and negative z directions, respectively.

Under the assumption of a matched waveguide in the negative

z direction, B0 will be non-zero only in the case of an ex-

ternally excited wave traveling in the positive z direction.

The TEM wave traveling in the negative z direction repre-

sents the reflected component of the incident TEM wave and/or

the TEM component of a transmitted wave incident on the aper-

ture from Region 2. The same definitions apply for B+ and
n

B which are the complex coefficients for the higher-ordern

modes in Region 1. In order for the solutions to the prob-

lems considered in the present investigation to be tractable,

the B+ and the B+ must be either zero or known quantities.0 n

In theory, there is no limit to the number of incident waves

which can be treated as long as the values of the coeffi-

cients are specified. Satisfaction of the boundary condi-

tions at a perfect discontinuity would require the excita-

tion of an infinite number of higher-order modes and, thus,

all Bn should be non-zero. The procedure for accurately

evaluating an infinite series of Bessel functions which is

introduced in Appendix B allows the solution of such problems

24



with a relatively small number of terms of the resulting

series (normally less than 20).

E. Evaluation of Constants in the z > s Region

The procedures for evaluating the constants in the

field expressions for the z > s region are the same as for

the z < s region. For a single discontinuity, C and Cn

are the complex coefficients of waves incident from the nega-

tive z direction and, if non-zero, are assumed to be known

quantities for the single-discontinuity case under discus-

sion. The C and C+ are the coefficients of TEM and higher-0 n
order mode waves traveling in the positive z direction in

Region 2. The expressions for these constants are

C+eJk+s + C0 ejk+S = I fhEp dp (38)

C+ e-j ns + Cn eJ-ns 1 1d + dTn pCe n +C n Ep p dp
n n d: (~d~Ir 2 dpfcP dp

c ld p

U2 fhp p dp .(9

The value of the normalization integral, denoted by U is

U= 2 N(XnC)Jl(Xnd) - j0(Xnc)Nl(Xnd)12 2 (40)

25
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F. Enforce Continuity of Transverse Fields in Aperture

The unknown constants in the field component expressions

for the regions on both sides of the discontinuity are now

defined in terms of weighted integrals over the unknown aper-

ture electric field. Fundamental boundary conditions require

that the transverse components of the electromagnetic field

be continuous across the aperture. This constraint has al-

ready been applied to the electric field component since
+ 0

E(ps) - E (p,s) = E pE(h,b)

Enforcing ccntinuity of the transverse magnetic field is ac-

complished by equating Eqs. (19) and (27) at the z - s plane,

i.e.,

H (P,S) H+(P,S) , p(h,b)

After the evaluation of B, B, CO, and C
4 through the use of0 n 0 n

Eqs. (32) , (37), (38) , and (39) , this equation becomes

2B 0 e j k - s  
_ I b E 0 dp

k 1 fib hEp d n

L2B + e-fnS - _ o pDn dp n+ - n=lan n M2  hEP - _
n=1- n n h p dp

- _ jk+s 1 b 0

=-2C 0  n +P+ lnS. fh E dp

+. -2C-n s + 1 b E o P o dnd Idn (41)

n+ n-i n hn d

26



The terms involving unknown constants are placed on the

left-hand side of the equation to obtain

+B e-jk_s - ejk+s 2k_ co 1 + -J s djn
2B + 2C0  + -Be n n0 flP 0 n-Pn- n n do

2k+ 1 L- C Jsd ( 1 s ) 1 b 0
- -c ea + -.

ka f1  dE n d
% = 2hP rp d

k+~ ~ n dnI~
+ 1 fbEo p ndpj n

n=l 6a n T J dp

A proper integral equation (i.e., one equation, one unknown)

may be obtained from Eq.(41) by the application of sufficient

constraints to evaluate the unknown constants. A commonly

encountered situation is TEM excitation only and from only

one direction. For an incident TEM wave in Region 1 travel-

ing in the positive z direction, B+ C0 and Cn would be zero.

The constant B would then be evaluated from Eq.(34a).

G. Application to Simpler Geometries

The expression presented in Eq.(41) pertains to the ge-

ometry depicted in Figure 2 which is a coaxial waveguide junc-

tion which includes both an annular disk on one conductor and

steps in the radii of both conductors. Most coaxial waveguide

27
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discontinuities are not this complex and the appropriate

integral equations are special cases of Eq.(41). It should

be noted that the presence of an annular disk on one or both

coaxial conductors affects only the limits of integration of

the three integrals in Eq.(41); consequently, this type of

geometry variation is easily treated. For a discontinuity

consisting of a step in the inner or outer radius only,

Eq.(41) is applicable with suitable adjustments of radii

values used in defining n ,an Mn , T 8n and U2 . In ad-
n M n n n

dition, the proper changes must be made in the limits of

integration. For the case of a discontinuity consisting

solely of an annular disk attached to the inner or outer

coaxial conductor, as shown in Figure 3, or both conductors,

as shown in Figure 1, Eq.(41) is simplified considerably.

Since the coaxial regions on both sides of the discontinuity

are now the same, the On of Eq.(20) and the T n of Eq.(27)

are now the same. An important and common simplification

occurs when the dielectric media in the two regions are the

same, i.e.,

£+ =E = (42a)

and

+= j_ = •(42b)

The constraints of Eq.(42) result in k+ = k_, an = 8n, and

1+ - r_.

An integral equation appropriate for the geometry of

28



Figure 3a under the assumption that the excitation consists

only of a TEM wave traveling in the positive z direction is

given by

2V + e- k-S +9E0
no In- - p ..nfad P

a a

k+ f [ 0 dn ]dO

+ n M EO  n dp n (43)nn=l an Mn )a P dp dP

ao do J doD

where a and a+ pertain to the negative and positive zn n

regions respectively. If the constraints of Eq.(42) are
2

applied to Eq.(43) a factor of - may be divided from each
n

term in the equation (noting that the two series would now

be identical). It is possible to change Eq.(43) into an

equation appropriate for the geometry of Figure 3b by chang-

ing the limits of integration for all integrals from (a,g)

to (h,b).

An integral equation appropriate for the geometry of

Figure 4a with the same excitation employed in Eq.(43) and

with the parameters T an and U 2 properly defined is givenwih hepaamtes n , n an n

by

29
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Figure 3a. Annular Disk Attached to the Outer Conductor

of a Coaxial Waveguide
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Figure 3b. Annular Disk Attached to the Inner Conductor

of a Coaxial Waveguide
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Figure 4a. Step Discontinuity in the Outer Conductor

of a Coaxial Waveguide
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Figure 4b. Step Discontinuity in the Inner Conductor

of a Coaxial Waveguide
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2V* e jk~s + 1 b E0 do

i n n  o 1A fa

n=1a 2a d F d
Sib I

k+ n f b dTn  d n (
+ ~ T+ U2 o .I44

n 1 n n a doP J do

This equation may be changed to one appropriate for Figure

4b by changing the limits of integration from (a,b) to (c,b)

and by making the appropriate changes to the definitions of

8n' n and U .

H. Integral Equation for a One-Port Coaxial Cavity

An effective way to create a one-port coaxial cavity is

to place a perfectly conducting, transverse plate across the

coaxial waveguide at a point on the positive z side of any

of the discontinuities depicted in Figures 3 and 4. The cav-

ity treated in this section is created from Figure 4a and is

shown in Figure 5. The expressions for the field components

in the coaxial regions are those given by Eqs.(17)-(19) and

(24)-(26) with the accompanying definitions. Note that, for

the subject geometry, the radii a and c are equal.

The constants in Eqs.(17)-(19) are defined by Eqs.(34)

and (37) with the assumption that the only excitation is a
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Figure 5. One-Port Cavity Formed from a Coaxial Waveguide

with a Step Discontinuity in the Outer Radius
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TEM wave traveling in the positive z direction in the region

z < s. Because of the perfectly conducting plate at z = t,

the following boundary condition is imposed:

E (p,t) = 0
p

An inspection of Eq.(24) reveals that this condition is en-

forced by requiring

C+ e-jk+t + CO eJk+
t  0CO  0

and

C+ e - j s nt + Cn ejant = 0n n

The resulting relationships between constants are

= -c+ e-j2k+t (45a)

and
+-j2B t(4bC =-C + e- n (45b)n n

Substitution of Eq.(45a) into Eq.(38) and Eq.(45b) into

Eq. (39) yields the following expressions for the constants:

co -- 0b dp (46)
j2sink+(t-s) 1A a p (

and
C = ±Zj a n t  Ib o d n
n j2sin n (t-s) U n  faE d- n- dp (47)

nn

An integral equation for the unknown aperture electric

field is again obtained by constraining the transverse mag-
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netic field to be continuous across the aperture. The fol-

lowing expression is obtained by equating Eqs. (19) and (26)

with the constants defined by Eqs. (46) and (47):

v+ e- jk-s  1 [bE0 do - V+ e-jk_s

n aP nb  nP 1nb Ja e

k 2 .f bE 0P d n d __t

n=l anM n  a
E  d

e jk+(t-s) + e-jk+(t-s) [b od

j2sink+(t-s) 1n + p a

k i s n (t -s ) + - a ( ) b B0  P d'Y o] d
2+~ 0t -

+ + ni[l j2sin n (t-s) 6 n fa° d o'  do
n nn a -Y Jd

Collecting terms yields the equation:

2V+ e-jks 1 jcotk+(t-s)) b 0

a a p' a d

k f b 0(b(+ --: E-.2 P den do dn

n-l anMn a d j d---

k+ jcots n(t-s) b 0 d n  d n

+ n U2 - fa E p d do n (48)
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I. Microwave Circuit Concepts

As described in Chapter I, essentially all early treat-

ments of waveguide discontinuities were directed toward cal-

culating the resulting change in admittance of the waveguide.

With the assumption of lossless waveguide walls and dielec-

trics, these admittance changes are purely reactive in na-

ture. The susceptance expressions found in the Waveguide

Handbook provide excellent data for comparison with results

obtained from solutions to the previously derived integral

equations. Since such solutions yield only the radial com-

ponent of electric field in the aperture, a small amount of

additional analysis is required to compute values of suscep-

tance due to the discontinuities.

Consider a uniform transmission line extending to z =

which has a single discontinuity at z = s. Such a transmis-

sion line is depicted in Figure 6. The admittance at z = s

looking in the positive z direction is given by

+
Y = Y + jB

L 0
+

where Y is the transmission line TEM characteristic admit-

tance for z > s and B is the TEM susceptance of the disconti-

nuity. The characteristic admittance of the line for z < s

is designated Y. The complex TEM (voltage) reflection coef-

ficient in the region z < s is defined by
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Figure 6. Junction of Two Transmission Lines of Different
Characteristic Impedance with a Lumped Suscep-
tance at the Junction
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r(z) =- ej2k (z-s)
YO + Y L

or Y o- - ( + jB e

r(Z) = 0  0Y_+B e -2 k_(z5) (49)
Y + (Y+ + B)

From Eq. (49), an expression for the normalized susceptance

at z sis obtained

I - + / r(s)(l + Y /Y0 (0jB 0 0 0(50)

Yo0 1 + r(s)

For transmission lines where Y0 Y0, Eq.(50) becomes

~~~jB = -2r s) 51
- -211s)(51)

YO 1 + r(s)

In the transmission line (or waveguide) region z < s,

the TEM voltage reflection coefficient is the ratio of the

reflected TEM voltage (or electric field) wave to the inci-

dent TEM voltage wave. As noted in Section D of this chap-

ter, B+ and B; are the complex coefficients of the positive

and negatively traveling TEM waves for Eqs. (17)-(19) which

are defined for the z < s region. The reflection coefficient

can now be represented by

- eJks B

r(z) =r(s) ej2k_(z-s) B e j2k_(z-s) = j2k_z. (52)
B+ e-jk s +B0  - 0
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The reflection coefficient can be defined in terms of the

aperture electric field through the use of Eqs. (34a&b)

r(s) = ( E0 dp - V+ - •jks (53)

The susceptance of the discontinuity may then be calculated

through use of Eq. (50) or Eq. (51). It should be noted that

Eq.(53) is a normalized expression since E is linearly re-
p

lated to V.
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CHAPTER III

NUMERICAL SOLUTION TECHNIQUE

A. Introduction

A solution for the unknown aperture electric field dis-

tribution in Eq.(43) may be obtained through use of the

method of moments, Ref.[9]. Application of such a method

requires intelligent choices of a set of expansion or basis

functions. For the waveguide discontinuities being treated

in this investigation, once a solution for the aperture

field distribution is obtained, all other quantities of in-

terest can be calculated. The desired field and susceptance

values are calculated from integrals of the aperture electric

field and weight functions over the aperture. The sample

solution technique illustrated in this chapter is applicable

to all single-aperture equations.

B. Selection of Basis and Testing Functions

An inspection of the integral under the summation sign

in Eq.(43) reveals that the integral is easily evalusted if

the value of pE0 is constant over the range of integration.
P

This may be effected by the choice of the following sub-

sectional, constant-value pulse expansion for the unknown
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aperture field. The expansion is illustrated in Figure 7.

N
q E () I Eq P (P) (54)
q-,. qq

where
wr 1, 0e(r -6/2,r + /2)

P()q q= (55)q 0, otherwise

and rq = a + (q-h)& where A = (g-a)/N is the pulse width.

Substituting Eq. (54) into Eq. (43) yields

2V+ e-jk~s f 1 1 + p 1
b~ in-Pr n P q q-fl+n lnj aq-1

k COg N
+- X 2 Eq Pq(P) dDn do d n

n l a q=l do do

+- 1 g2 E P (P) dn d n (56)
n L jLnMn aql q q Q d-n

The first integral is easily evaluated:

N N r q+/2
Z E P(p) do - E

a q-1 q q q-l r q-/2

N
1 1 Eq ln{(rq +A/2)/(r q-A/2)} (57)

The last two integrals have the same value which is given

by
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Wq2 ATCH POINTS g
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Eq=APERTURE FIELD r3 E3
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COEFFICIENTS

rE2

z

Figure 7. Illustration of Numerical Solution Technique

Expansion and Testing Functions

42



r +A/2g N N rq
S E P (p)dn= Eqd

a q-l q=l r q-/2rq-/

N
Iq1 E [ n(rq +/2) - n (r q-6/2)] (58)

q=l

After the substitution of the integral values of Eqs. (57)

and (58) into Eq. (56), the following equation is obtained

2+e- jk s 1i N
2V~ - = + -I- E ln {(r +A~/2)/(r At/2)1

n-P lnJ V-I_ )+P I lnlq= 1 q q q-
a N

+. 2 _E_ [$n (rq+/2) - q (r-A/2)] _n

Mn=1  q n qI n q I dp
k+ 00 N d]

+ n lE I n(r+A/2) -D (rq-6/2)l n " (59)
Y)+ n=l (,,1M q=l q q nq dnn I

An important consideration in the selection of a set of

testing functions is the avoidance of "sampling" the integral

equation at a point where the aperture field has a singular-

ity. All planar discontinuities discussed in the report

possess 90 degree or 180 degree exterior corners at which

points the normal component of electric field is singular.

The integral equation for the aperture field of a planar co-

axial waveguide discontinuity such as given by Eq. (43) pos-

sesses the same important features as does the integral equa-

tion for the two-dimensional, conducting strip illuminated by
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a TM wave (and the infinite slot illuminated by a TE wave).

The experiences of Butler, et al., Refs.[23] and [24], sup-

port the selection of constant-value, pulse basis functions

with the testing functions consisting of Dirac delta func-

tions at the pulse centers. Delta functions used in this

manner are commonly called "match points." The set of R

match points, which is illustrated in Figure 7, may be ex-

pressed mathematically by

.T(p) = (6(p-r 1),..., 6 (p-rp),... ,6(p-rr)) . (60)

The testing functions force the subject equation to be valid

at each point

p = r = a + (p- )A , p = 1,2,...,R

Substitution of the expressions

rq + A/2 = a + qA = rq (61a)
q q

and

rq -/2 = a + (q-l)A = rq (61b)

for the pulse limits in Eq. (59) simplifies the notation

somewhat. By sampling Eq.(59) at a set of R = N match

points, a set of N algebraic equations for N unknown Pulse

amplitudes is obtained which can be solved for the unknown

electric field in the aperture. This set of equations is
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represented by

2V~ e ~ 1 1 E + -/
n r nn = l _ Eq nnq rq1-p aa

N d$(r
+ E ~ q ~~ ~M ~(rq) V (r-) r~

+ + E n [N(r) - (r)] dn(r
n+ q=, q -n=l M q n q

p = 1,2,...,N (62)

The final expression given by Eq. (62) is now in a de-

sirable form for numerical determination of E . Special

attention must be paid to the convergence of the infinite

series of Bessel functions. In general, such series have

poor convergence properties and operations on the series to

improve the rate of convergence are warranted. A very ef-

fective procedure for improving the convergence of series

such as that in Eq.(62) is described in Appendices B and C.

Application of the procedure does not affect the form of

the equation since the operations are only upon the series,

but the additional step of determining the asymptotic form

of the series elements is required.

C. Numerical Results for Single Discontinuities

A digital computer has been employed to obtain solu-

tions to Eq. (62) with constant ratios of a, b and c at five
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different frequencies. The real and imaginary parts of the

aperture electric field are plotted for a frequency range

that extends from below to above the cutoff frequency for

the first higher-order mode in the waveguide. The first

three frequencies are below and the last two are above cut-
1

off. All plotted field distributions display a - variationP

near the center conductor and a singular behavior as the

edge of the disk is approached. For frequencies above the

cutoff, the imaginary part normally exhibits one or more

zero crossings. The aperture field distributions for an

annular disk attached to the center conductor of a coaxial

guide (Figure 3b) are shown in Figure 9. In this set of

curves, the singular behavior is again displayed near the

edge of the disk, and the 1 variation becomes apparent nearP

the outer conductor.

Similar results for the steps in outer and inner radii

of the coaxial guides illustrated in Figures 4a and 4b are

presented in Figures 10 and 11. The behavior of the aper-

ture field distributions is analogous to that shown in Fig-

ures 8 and 9 with the singular behavior being less pro-

nounced near the 90 degree edges than for the 180 degree

ones. In Figure 12 are shown the aperture field distribu-

tions obtained when a shorting plate is added to the geom-

etry of Figure 10 to create a one-port cavity.
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In Figure 13, the effect of varying the number of

basis function pulses across the aperture is presented for

the goemetry of Figure 3a. The plotted curves show that
1

the correct - behavior is captured by even a few pulses

across the aperture. The nature of the field singularity

becomes much more evident as the number of pulses is in-

creased. Because most of the quantities of interest in

this investigation are calculated from an integral of the

aperture field, the effect of missing the fine detail of

the singularity is substantially reduced, a fact that is

demonstrated in Table 6.

In Tables 1 through 5 are presented values of suscep-

tance computed from expressions in the Waveguide Handbook

for the discontinuities depicted in Figures 3a, 3b, 4a, 4b

and 5. Also in each table are the corresponding susceptance

values calculated from Eq.(50) and (51) with the aperture

field approximated by means of solutions to integral equa-

tions. The use of Eqs.(50 and (51) requires evaluation of

the aperture field integral in Eq.(53). The value of this

integral is obtained by evaluating the right-hand side of

Eq.(57) with the known values of Eq.

The variational approach used in the derivation of the

susceptance expressions in the Waveguide Handbook also in-

volves determining an approximation for the aperture field.

For assumed aperture electric field distributions that dif-
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fer from the true distribution by a small amount, the re-

sulting susceptance computations are only slightly larger

than those that would be computed from the true distribution.

It should be recalled from Chapter I that, with the varia-

tional approach, a first-order error in the aperture distri-

bution results in only a second-order error in the calculat-

ed susceptance. This discussion tends to indicate that the

smaller of two calculated susceptance values is the more ac-

curate; however, caution must be exercised since the exact

answer is not known. The concept of the true susceptance

value being a local minimum is supported by the results pre-

sented in Table 6 where complex admittance calculations are

given for three variations of the discontinuity in Figure 3a

as the number of basis function pulses is increased. Both

the real and imaginary parts of the admittance appear to be

converging to lower bounds. For the two cases where the

frequency is below cutoff, the real part rapidly tends toward

zero as the number of pulses is increased. As the number of

pulse functions is increased, there is a requirement for a

larger number of terms in the Bessel function series to main-

tain accuracy because representing a narrow pulse with a

Fourier-Bessel series requires a greater number of terms

than does a wider pulse. It is probable that at some point

numerical error will become significant, but, even with this
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caveat, the concept of the lower bound on calculated suscep-

tance being the correct value is supported.

In Tables 7 and 8, the effects of increasing the num-

ber of terms in the modified higher-order mode series are

demonstrated for two different size pulse expansions in

three different apertures. The convergence behavior shown

in Table 6 is not present. After a relatively few terms in

the series have been computed, an oscillatory behavior is

observed which appears to converge toward an ultimate correct

value. It is expected that numerical error becomes a factor

before the final limit is identified, but, because this con-

vergence behavior manifests itself in relatively few terms,

the magnitude of such error appears to be small.

The calculated integral equation data presented in

Tables 1 through 5 contain calculations made at the cutoff

frequency for the TM01 mode in the larger section of wave-

guide. These calculations are actually made in the limit

as the frequency approaches the cutoff point and are courtesy

of the small inaccuracies introduced by the computer. The

integral equations have terms which are undefined at these

transverse resonance frequencies. This attempt to sidestep

the singular nature of the equations is rewarded by negative

real parts for the admittance in three of the tables. The

relatively large real parts (although very small when com-

pared to the imaginary parts) of the admittances calculated
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at the cutoff frequencies in Table 5 are also a product of

computer error.

It is not possible to draw conclusions on the relative

accuracies of the integral equation and Waveguide Handbook

approaches without establishing parameters. It appears to

be always possible to take sufficient expansion pulses and

series terms to calculate an admittance correction which is

smaller than the corresponding Waveguide Handbook figure.

All calculations made for Tables 1 through 5 and for Tables

10, 11, 12, and 13 used 20 pulses and 30 series terms. This

pulse-series combination gives very acceptable results with

minimal computer time expenditure.

It is possible to compare integral equation results with

more accurate calculations of coaxial discontinuity suscep-

tance. A. Jurkus, Ref.[13], has produced a refinement of

P. I. Somlo's computer code, Ref.[10], which employs the

Hahn series approach developed by Whinnery, et al., Ref.[8].

Jurkus presents results for the capacitance of a coaxial

waveguide with a step in the inner conductor. His calcula-

tions contain 10 digits and the numerical precision is claimed

to be ±1 in the fifth digit. In Table 9, comparisons are pre-

sented for the results obtained for the Jurkus, integral

equation, and Waveguide Handbook approaches. The integral

equation calculations were made with 50 pulses and 50 series

terms. Jurkus' results, which employed 1000 series terms
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compared to Somlo's 40, are uniformly slightly less than 0.3%

below the integral equation results. The approach employed

by Jurkus, et al., does not involve the solution of a set of

simultaneous linear equations, so there can be no straight-

forward comparison of numerical computation expense. Ex-

perience gained during this effort strongly indicates that

the magnitude of the computed integral equation capacitance

could be reduced below that of Jurkus by using a sufficient

number of expansion pulses. It should be noted that the

agreement of the integral equation capacitance for both

geometries was obtained by different calculations. In

Chapter IX, Table 14 presents a number of comparisons of the

capacitance of a coaxial-to-circular waveguide junction in

which the integral equation results are shown to be very

accurate.
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TABLE 1. CALCULATED SUSCEPTANCE OF AN ANNULAR DISK ATTACHED TO THE
OUTER CONDUCTOR OF A COAXIAL WAVEGUIDE (NORMALIZED)

a - c/6 b c/2

c/A Waveguide Handbook Integral Equation

0.0010 0.0 + J0.00156520 0.00058660 + jO.00157331

0.0100 0.0 + jO.01565200 0.00058659 + jO.01565393

0.0500 0.0 + j0.07850436 0.00058634 + j0.07890602

0.1000 0.0 + jO.15850730 0.00058555 + 20.15928538

0.2000 0.0 + jO.33006177 0.00058209 + jO.33135521
0.3000 0.0 + j0.53492015 0.00057511 + j0.53571828

0.4000 0.0 + jO.82068523 0.00056125 + j0.81659679
0.5000 0.0 + jl.38924230 0.00052592 + jl.34509956

0.5600 0.0 + j2.82512207 0.00043400 + J2.38070170
0.5817 Cutoff Freq -0.00005884 + j7.67352323

0.6000 Above Cutoff 3.11703197 + jl.61050941

0.7000 Above Cutoff 1.6441R242 + jO.38996023

a - c/2 b- 2c/3

c/X Waveouide Handbook Integral Equation

0.0010 0.0 + j0.00197451 0.00003314 + jO.00199170

0.0100 0.0 + jO.01974593 0.00003314 + jO.01991780

0.0500 0.0 + JO.09882843 0.00003314 + jO.09968915

0.1000 0.0 j0.19827879 0.00003313 + jO.20000873

0.2000 0.0 + jO.40167294 0.00003311 + j0.40520104

0.4000 0.0 + jO.84941823 0.00003302 + JO.85702615

0.5000 0.0 + J1.11344261 0.00003293 + J1.12347096

0.6000 0.0 + jl.42841388 0.00003280 + jl.44118492

0.8000 0.0 + j2.43356469 0.00003227 + J2.45173828

0.9000 0.0 + j3.61737121 0.00003151 + j3.62722902

0.9945 Cutoff Freq 0.00001057 +J30.33650604

1.1000 Above Cutoff 4.15095650 + jO.85150308
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TABLE 2. CALCULATED SUSCEPTANCE OF AN ANNULAR DISK ATTACHED TO THE
INNER CONDUCTOR OF A COAXIAL WAVEGUIDE (NORMALIZED)

a - C/6 b c/2
c/X Waveguide Handbook Integral Equation

0.0010 0.0 + jO.0362468 0.00027253 + j0.00365967

0.0100 0.0 + j0.03625057 0.00027254 + j0.03660017

0.0500 0.0 + jO.18170876 0.00027267 + jO.18342761

0.1000 0.0 + jO.36631767 0.00027309 + j0.36956776

0.2000 0.0 + jO.75753951 0.00027487 + JO.76232629

0.3000 0.0 + jl.21013329 0.00027839 + j1.21116118

0.4000 0.0 + ji.80461695 0.00028501 + ji.78144529

0.5000 0.0 + j2.88524378 0.00029977 + j2.67602259

0.5600 0.0 + j5.72519939 0.00032587 + j3.85053889

0.5817 Cutoff Freq 0.00038165 + 25.81638213

0.6000 Above Cutoff 2.15903638 + j5.12827991

0.7000 Above Cutoff 3.62498168 + j4.91082115

a - c/2 b 2c/3

c/X Waveguide Handbook Integral Equation

0.0010 0.0 + jO.00083319 0.00007785 + j0.00085388

0.0100 0.0 + J0.00833212 0.00007785 + J0.00853904

0.0500 0.0 + j0.04168796 0.00007786 + jO.04272324

0.1000 0.0 + j0.08354763 0.00007787 + JO.08562268

0.2000 0.0 + JO.16849 223 0.00007795 + 10.17268213

0.4000 0.0 + jO.34899602 0.000078d8 + j0.35781976

0.5000 0.0 + JO.44883165  0.00007856 + JO.46044428

0.6000 0.0 + 10.55951281 0.00007895 + j0.57451142

0.8000 0.0 + jO.84654291 0.00008040 + J0.86911853

0.9000 0.0 + jl.0
8 9 7 7 9 0 5  0.00008196 + jl.09639242

0.9945 Cutoff Freq 0.00008834 + j1.70338315

1.1000 Above Cutoff 0.71330318 + J1.61754223
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TABLE 3. CALCULATED SUSCEPTANCE OF A STEP IN THE OUTER RADIUS OF A
COAXIAL WAVEGUIDE (NORMALIZED BY THE LEFT-HAND WAVEGUIDE)

a - c/6 b c/2

€/X Waveguide Handbook Inteqral Equation

0.0010 0.0 + jO. 0 00 5 2 2 5 9  0.00051126 + j0.00052505

0.0100 0.0 + j0.00522663 0.00051126 + jO.00525117

0.0soo 0.0 + 0.02621644 0.00051116 + j0.02633891

0.1000 0.0 + j0.05296478 0.00051083 + j0.05320808

0.2000 0.0 + j0.11056802 0.00050942 + jO.11103353

0.3000 0.0 + jO.18006588 0.00050655 + jO.18064396

0.4000 0.0 + jO.27869199 0.00050074 + jO.27879113

0.5000 0.0 + jO.47982823 0.00048527 + jO.47401488
0.5600 0.0 + jO.98287410 0.00044321 + jO.90923393

0.5817 Cutoff Freq -0.00007031 + j5.68891810

0.6000 Above Cutoff 1.16333598 + jO.26601990

0.7000 Above Cutoff 0.53058243 + jO.07136124

a a c/2 b- 2c/3

c/X Waveguide Handbook Integral Equation

0.0010 0.0 + jO.000442S6 0.00002425 + JO.00044315

0.0100 0.0 + j0.00442577 0.00002425 + j0.00443165

0.0500 0.0 + jO.02215205 0.00002425 + 20.02218148

0.1000 0.0 + JO.04445010 0.00002425 + 10.04450931

0.2000 0.0 + jO.09010117 0.00002424 + j0.09022265

0.4000 0.0 + J0.19102869 0.00002420 + JO.19129943

0.5000 0.0 + J0.25094968 0.00002417 + jO.25131700

0.6000 0.0 + jO.32292430 0.00002413 + j0.32340570

0.8000 0.0 + jO.55683513 0.00002394 + j0.55737816

0.9000 0.0 + 10.84136428 0.00002366 + j0.84018797

0.9945 Cutoff Freq 0.00000713 +114.87807544

1.1000 Above Cutoff 0.90926887 + j0.12537772
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TABLE 4. CALCULATED SUSCEPTANCE OF A STEP IN THE INNER RADIUS OF A
COAXIAL WAVEGUIDE (NORMALIZED BY THE LEFT-HAND WAVEGUIDE)

a a c/6 b -c/2

C/) waveuide Handbook Integral Equation

0.0010 0.0 + j0.00209161 0.00044132 + j0.00210399

0.0100 0.0 + jO.02091867 0.00044132 + j0.02104239

0.0500 0.0 4 jo.10490495 0.00044144 + j0.10551809

0.1000 0.0 + j0.21179806 0.00044182 + J0.21298804

0.2000 0.0 + j0.44086145 0.00044349 + j0.44287046

0.3000 0.0 + j0.71368241 0.00044685 + J0.71510837

0.4000 0.0 + j1.09143147 0.00045356 + 31.08610510

0.5000 0.0 + j1.82817276 0.00047050 + j1.76514962

0.5600 0.0 + J3.63777780 0.00050965 + j2.99413580

0.5817 Cutoff Freq 0.00067809 + j7.50582984

0.6000 Above Cutoff 3.70562650 + J2.80386573

0.7000 Above Cutoff 2.35142230 + 30.69252237

a a C/2 b 2c/3

c/% Wavequide Handbook Integral Equation

0.0010 0.0 + J0.00050401 0.00010060 + j0.00050544

0.0100 0.0 + j0.00504031 0.00010060 * 30.00505455

0.0500 0.0 + J0.02522438 0.00010060 + j0.02529554

0.1000 0.0 + 30.05059232 0.00010062 + 10.05073454

0.2000 0.0 + J0.10236195 0.00010067 + J0.10264547

0.4000 0.0 + j0.21519440 0.00010092 + 10.21574369

0.5000 0.0 + j0.28051462 0.00010113 + JO.28115931

0.6000 0.0 + J0.35676104 0.00010145 + j0.35739963

0.8000 0.0 + J0.58432744 0.00010275 + J0.58288265

0.9000 0.0 + 10.82080969 0.00010446 + 10.80792331

0.9945 Cutoff Freq 0.00011939 + J2.24993063

1.1000 Above Cutoff 1.06489802 + j0.63059216
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TABLE 5. CALCULATED SUSCEPTANCE OF A ONE-PORT COAXIAL CAVITY
(NORMALIZED BY THE INPUT WAVEGUIDE)

a - c/6 b c/2 d - 3c

c/X Waveguide Handbook Inteqral Equation

0.0010 0.0 - j32.52409365 0.00031693 - j32.53439935

0.0100 0.0 - 1 3.20900351 0.00031693 - j 3.20999767

0.0500 0.0 - j 0.41926107 0.00031687 - j 0.41927976

0.1000 0.0 + j 0.25218838 0.00031667 + j 0.25249477

0.2000 0.0 - j 0.73335669 0.00031579 - j 0.73315769

0.3000 0.0 + j 1.02399059 0.00031401 + j 1.02483368

0.4000 0.0 + j 0.07946839 0.00031041 + j 0.07950574

0.5000 0.0 - j 4.9826x10 e  881.54673050 - j 4.9841x104

0.5600 0.0 + j 0.69434893 0.00027447 + j 0.62456391

0.5817 Cutoff Freq -0.00004352 + j 5.67004190

0.6000 Above Cutoff 0.00020467 + j 2.26837281
0.7000 Above Cutoff 0.00035314 - j 1.12708972

a c/2 b 2c/3

c/N Waveguide Handbook Inteqral Equation

0.0010 0.0 - j22.01537281 0.00001714 - j22.01574949

0.0100 0.0 - j 2.17127699 0.00001714 - j 2.17130840

0.0500 0.0 - j 0.27939034 0.00001714 - j 0.27936609

0.1000 0.0 + j 0.17930395 0.00001713 + j 0.17936609

0.2000 0.0 - j 0.48114894 0.00001713 - j 0.48103724

0.4000 0.0 + j 0.05617483 0.00001711 + j 0.05644327

0.5000 0.0 - j 3.3727x10 e  403.14432740 - j 3.3728xI0l

0.6000 0.0 j 0.45777816 0.00001705 + j 0.45826186

0.8000 0.0 * j 1.12808524 0.00001692 + j 1.12863794

0.9000 0.0 + j 0.70651042 0.00001672 + j 0.70533203

0.9945 t;.±toff Freq 0.00000501 + jll.9 0 4 9 1 94 8

1.1000 Above Cutoff 0.00001645 + j 1.53150570
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TABLE 6. CALCULATED SUSCEPTANCE OF AN ANNULAR DISK ON THE OUTER
CONDUCTOR OF A COAXIAL WAVEGUIDE AS THE NUMBER OF

EXPANSION PULSES IN THE APERTURE rS VARIED (NORMALIZED)

a -c/s b - 4c/5 X - 2c Acutoff 0 1.65c

Wavequide Handbook Susceptance - 0.0 + j0.16470255

No. of a inteqral Equation
Pulses 7 Susceptance

5 0.0600 0.01727536 + jO.18367030
10 0.0300 0.00446745 + jO.16502277
15 0.0200 0.00199920 + j0.15899635
20 0.0150 0.00112726 + jO.15601510
25 0.0120 0.00072224 + j0.15423484
30 0.0100 0.00050185 + jo.15305148
35 0.0086 0.00036883 + j0.15220771
40 0.0075 0.00028244 + jO.l5157575
50 0.0060 0.00018081 + jO.15069203

a - c/s b a 2c/5 X 2c xcutoff a 1.65c

waveguide Handbook Susceptance - 0.0 + j2.27553677

No. of a inteqral Equation
Pulses r Susceptance

5 0.0200 0.00307077 + j2.32601738
10 0.0100 0.00076432 + j2.28872639
15 0.0067 0.00033898 + j2.27678771
20 0.0050 0.00019045 + j2.27091264
25 0.0040 0.00012180 + j2.26741777
30 0.0033 0.00008454 + j2.26510059
35 0.0029 0.00006209 + j2.26345157
40 0.0025 0.00004752 + j2.26221827
50 0.0020 0.00003040 + J2.26049647

a -c/5 b - 2c/5 X a c/5 xcutff " 1.65c

Waveguide Handbook Susceptance a Above Cutoff Freq

No. of A Integral Equation
Pulses Susceptance

5 0.2000 2.63616915 + jO.18763705
10 0.1000 2.59431266 + J0.17881963
15 0.0667 2.58133988 + jO.17437867
20 0.0500 2.57510034 + j0.17181552
25 0.0400 2.57144336 + jO.17015885
30 0.0333 2.56904400 + JO.16900265
35 0.0286 2.56734976 + jO.16815072
40 0.0250 2.56609013 + jO.16749720
so 0.0200 2.56434298 + j0.16656094

- Width of Pulse 30 Terms were calculated in the series
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TABLE 7. CALCULATED SUSCEPTANCE OF AN ANNULAR DISK ATTACHED TO THE OUTER
CONDUCTOR OF A COAXIAL WAVEGUIDE AS THE NUMBER OF TERMS IN THE

HIGHER-ORDER MODE SERIES IS VARIED (NORMALIZED)
APERTURE FIELD EXPANDED IN 20 PULSES

a -c/5 b - 4c/5 a -c/5 b - 2c/5 a - C/S b - 2c/5

X 20C x utoff , 1.65c X - 20c x cutoff , 1.65c 1 -c/5 A cutoff , 1.65c

Wavealde Handbook Susceptance ave Uide Handbook SuSceptance Waveaulde Handbook Susceptance
0.0 + J0.01280232 0.0 + J0,14230349 Above Cutoff Trequemncy

No. ToLms lnteq]:al Equaton No. Terms I.ntecjzal Equarton No. ToLms lntec 8a1 Equati~on
in Seri es Susceptance in Series Suscoptance in Series Susceptance

1 0.00118614 + 10.01351677 1 0.00020059 + JO.15513573 1 1.37815686 + J4.44734382
5 0.00115467 # J0.01319134 5 0.00019970 + J0.14343000 5 2.43647412 + J0.37385966

10 0.00116489 + J0.01314581 10 0.00019960 + J0.14332278 10 2.57052629 + J0.16619757

15 0.00116302 + J0.01314133 15 0.00019952 + J0.14334945 15 2.57297198 + J0.17056063

2o 0.00116507 + 10.01314024 20 0.00019956 + J0.14334071 20 2.57426580 + J0.17093339

25 0.00116308 + J0.01313959 25 0.00019955 + J0.14334229 25 2.57486388 + J0.171601800

30 0.00116507 + J0.01313960 30 0.00019953 + 10.14334152 30 2.57510034 + J0.17181552

40 0.00116506 + J0.01313975 40 0.00019953 + J0.14334104 40 2.57524051 + J0.17171150

50 0.00116506 + J0.01313969 50 0.00019955 + J0.14334051 50 2.57532391 + 10.17195233

TABLE 8. CALCULATED SUSCEPTANCE OF AN ANNULAR DISK ATTACHED TO THE OUTER
CONDUCTOR OF A COAXIAL WAVEGUIDE AS THE NUMBER OF TERMS IN THE

HIGHER-ORDER MODE SERIES IS VARIED (NORMALIZED)
APERTURE FIELD EXPANDED IN 50 PULSES

a a c/5 b - 4c/5 a - c/S b - 2c/5 a -c/5 b - 2c/5

ILa 0 A ctff, .5c X 0c xcutoff ,.6c A-C5 Acutoff 1.s

wavequide Eandbook Suscepta jce (avequid, Handbook Sufceptance wvequi e Handbook Suaceptance
0.0 + 10.01280232 0.0 + j .14230349 Above Cutoff Frequency

No. Tom Inteqral Equation No. Term- Inteqral Equation No. Terma Interal Equation
in Seies Susceptance in Series Suaceptance in Series Suceptance

1 0.00018993 J0.01310735 1 0.00003203 10.15424329 1 1.37399736 + 14.39469120

5 0.00018647 + J0.01278999 S 0.00003189 # 10.14273483 5 2.42168653 + J0.36707202

10 0.00018649 * 10.01274783 10 0.00003183 * 10.14261662 10 2.55995942 + 10.16163260

15 0.00018671 # 10.01274350 15 0.00003186 + 10.14264501 15 2.56233020 + 10.16542236

20 0.00018671 + 10.01274270 20 0.00003187 + J0.14263671 20 2.56360487 + J0.16577117

25 0.00018672 + 10.01274224 25 0.00003187 + 10.14263740 25 2.54413201 * 10.16636231

30 0.00011672 + J0.01274206 30 0.00003187 + 10.14263699 30 2.56434298 * 10.16656094

40 0.00018671 * 10.01274211 40 0.00003187 + 10.14263664 40 2.56447746 + 10.16663587
50 0.00018671 + 10.01274213 50 0.00003187 * J0.14263606 50 2.56453807 + 10.16666803
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TABLE 9. COMPARISONS OF CALCULATED CAPACITANCE OF COAXIAL
STEP DISCONTINUITIES WITH RESULTS OF A. JURKUS

2b

a - 0.209672 cm b - 0.714375 cm c - 0.310205 cm

Freq Jurkus Inteqral Equation Waveguide Handbook
GN: Capacitance Complex Capacitance Capacitance

fetoFarads feitoFarads foitofarads

0.000 18.87112905 0.0006691302 + j18.92582501*

1.000 18.87742237 0.0000000008 + J18.93211996 18.96409053

2.000 18.89635437 0.0000000003 + j18.95105772 18.98333401

3.000 18.92808243 0.0000000002 + j18.98279505 19.01559548

4.000 18.97287338 0.0000000002 + J19.02759828 19.06116396

2a -t 2c

a = 0.310205 cm b = 0.714375 cm c a 0.209672 cm

Freq Jurkus Inteqral Equation Wavequide Handbook
GRZ Capacitance Complex Capacitance Capacitance

featofarads feintoFarads faemtofarads

0.000 18.87101768 0.0006691302 + j18.92582501 **

1.000 18.87731097 0.0000000006 + J18.93211996 18.96409053

2.000 18.89624288 0.0000000004 + J18.95105772 18.98333401

3.000 18.92797080 0.0000000002 + J18.98279505 19.01559548

4.000 18.9727-6154 0.0000000001 + J19.02759828 19.06116396

Inteqral Equation calculation at 1000 Hz
No Result
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CHAPTER IV

INTEGRAL EQUATIONS FOR A TWO-PORT COAXIAL CAVITY

A. Introduction

In Chapter II, integral equations are derived for the

transverse electric field in the apertures of the coaxial

waveguide discontinuities depicted in Figures 3 and 4. Sub-

sequently, it is demonstrated that a one-port coaxial cavity

can be formed by adding a shorting plate to a waveguide con-

taining a discontinuity, and the integral equation appropri-

ate for such a geometry is derived. The analysis is now un-

dertaken for the treatment of a two-port, coaxial cavity

formed Ly placing two discontinuities in a coaxial waveguide.

Such a geometry is illustrated in Figure 14 where three re-

gions of interest are defined:

Region 1: z < s

Region 2: s < z < t

Region 3: z > t

B. Expressions for Field Components

In order to describe the field in each of the three re-

gions, three sets of expressions equivalent to those of

Eqs.(17)-(22) are required. The following set of equations
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represents the field in each of the three regions where the

individual regions are specified by i =1, 2, or 3.

i + e-j i z - e jki

p 10 p io p

+ (B. e-jainz + B i e inZ in~ (63)
n=l indp

2
' -ja. z j

E j (B. e in -B: ejainZ) (D (64)z n=l OLin in in in

i + e-j i z - e jki

iO nlip iOni

k+ 1i +O-ot jot z d(P.
I - --(B. e ijnZ B: e in) in (65)

"i n-l a nin in dp

where

Din()= N O(Yi a)J 0 (Yinp) -J 0 (Yin a)NO (Yinp) (66)

and

k? =(672
in in in (7

The 0 i are the roots of the transcendental equations:

0ln (b) = N (Ylna)J 0 (Ylnb) - JO(Yln a)NO (Yln b) = 0 , (68a)

0 2n (c) = N (y 2 a)J 0O(y 2 nC) - J O(y 2 n a)N O(y 2 n C) = 0 , (68b)

(D3n (d) = N (y 3 a)J 0 (Y3 nd) - i O~y 3n a)N 0 (Y3 n d) = 0 (68c)

where a, b, c and d are radial dimensions defined in
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Figure 14. The dielectric medium in each of the three re-

gions is characterized by the parameters:

k= w E (69a)

and

n = (69b)

C. Evaluation of Constants in Field Expressions

The procedure for evaluating the expansion constants

in Eqs.(63), (64) and (65) for i = 1, 2 and 3 is the same

as that employed in Chapter II. The unknown aperture field

in each of the two discontinuities is designated

E (p,s) E (ps) =1 (70a)p p a aand

2(p,t) E 3(pt) = E2 (70b)Ep = p , =E

The above notation allows the unknown constants in all

three regions to be expressed in terms of weighted inte-

grals over the appropriate aperture fields. A notation is

adopted for representing the individual integrals which

will allow the resulting equations to be written more com-

pactly. Each integral will be denoted by Ii where i is
p

the number of the aperture, p = 0 represents a weight func-

tion of unity, and p = mn indicates the use of the proper
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Bessel function weighting factor. The following expressions

are obtained for the constants in each region by application

of the Fourier-Bessel series techniques described in Chapter

Ii.

Region 1:

*b+ * Jkl s  _ eJkls  1 1 =1

B4  ek1 + B e i aE  d p  i-- 11 (71a)1,0 10 fbE1 dp -lnt a lnta a

B+  e- >~S+ B eJ1nS = s 1  b 1  d2 IIn Bn Ma2 Ea P M do m n (71b)
Mina pMI

Region 2:

B+ e-jk2 + B- ejk2 s= E d I (72a)2,0 2 P 0  inS aa = na a

B + e-j 2n + B-e a2ns = -1 bEl d2do= (72b)
2n 2n e n2 a n do 2 2 12n

~ e 2t Mn  2~ -- - n C3)..B+ e-jk t - ejk t =-.1fdr2i - I 7a
2 ,0 2 B, 0  in- a in-

e-ja a at=E 2 o=11

2n 2n + Bn eja2nt (73b)
22nM 2  a a do M 2  -2n (7b

• The subscript notation 1,0 is used where there is a chance

of ,isinterpretation; otherwise, the comma is omitted in the

subscripts of the unknown constants and integral symbols.
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Region 3:

+ e-Jk3t +- ejk3t = - dE 2 dp1-4
B3,0 e B 3 ,0 eIJn' aa ln I0  (74a)

B3 e-J3nt + B eJnt = p dp 71 2M a d
M3n a oM3n

In Region 1, the constants for the waves traveling in

the negative z direction may be expressed in terms of the

constants for the positive-traveling waves:

1,0  in bi0 1, -Bi 0 e-Jkis (75a)

- "ci in I + e-Jin s
inin . (75b)MIn

In Region 2 there are four unknown constants and also four

equations given by Eqs. (69) and (70). It is therefore pos-

sible to express each constant in terms of aperture-field

integrals:

B + 1 t+I1 e ±jk 2t ; 2 e±jk s (76a)

2,0 j2sink2 (t-s) inS "

B + 1 +I 1  e±)J2nt ; 12 e Ji2nS (76b)2n j2sina 2n(t-s) M2  2n 2n

In Region 3, the constants for the waves traveling in the

positive z direction are expressed in terms of the constants
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for the negative-traveling waves:

+ Jkt _j_ 2 - jktB e 3 - B30 e 3 (77a)3,0 1ln d 30

B+  = eJC3nt _f_ 12 - eja3nt(3n 3-B (77b)

D. Enforcing Continuity of Transverse Fields in Apertures

The next step in formulating an integral equation for

the transverse electric field in each of the two apertures

is to require that the transverse component of the magnetic

field be continuous across each aperture. The continuity

requirement on the transverse electric field already is en-

forced by Eqs. (70a&b). An equation is now obtained by re-

quiring that H1(p,s) = H2(p,s):

2B + e-JklS
, 1 1 1

lp nlp ln b  0
1 a

+ 1 2Bn e-alns - ii n

a-in2Ii
qn 1 ln M in dp]

1 1 i ejk2 (t-s) - 21 2 + 11 e-Jk 2 (t-s)

j2sink2 (t-s) n2p nc

1 iln eja2n(t-s) - 2

n2 nz1 j2 sina2n(t-s) 2nM 2n 2 n

+ Il e-Ji2n(t-s)J do 2 n
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Collecting the terms with unknown constants on the left-hand

side yields the equation

2B + e-jk1s kl 2 B +  " d in
1,0 +1 2B+e- ]ain dtn

71P nl ain in dp

1_+_k__ 0 1 1 dt

b I_ in
n p ln- ln=la M2  in dp1 an in

jsink2 (t-s) n2p i cosk2 (t-s)- I0]

k 2 co 1 c°San(t-s) - 1n d 2
+2 nl jsina2n(t-s) a 2 2n2 n 2n2n 2nM2n

(78)

Inspection of Eq.(78) reveals that this equation would

be identical in form to Eq.(48) if all the constants B+  and
inthe inegral 2 and12awe

12 and 2 ere equal to zero. The reason for

this similarity is that Eq.(78) is the general form of the

coupled integral equations obtained when two planar discon-

tinuities are placed in a coaxial waveguide. A shorting

plate is a special case of a planar discontinuity and, there-

fore, Eq.(48) is representative of a two-discontinuity geom-

etry. It follows that the integral equation obtained from

constraining H2(p,t) to be equal to H 3(p,t) has the same

form as Eq.(78) and can be written as
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ij t
2B- e~k3t k2B-3,0 e_ 3 30 2 t d43n

3 - + - - e3)3nt 3n
nil d3n

, 1 2 +k 3  1 2 d3n
d I0 n 1 3 n "3

3 a 3n 3n dp

jsink2 (t-s) n2P in c  0 2 (t-S)

+ 2  01 1 2 1)C t-) IIn 2R2-n2l 1 2sin 2n2t-s )  -n 2n d2
M22 n=l sinan2 (t-s) a- 2 M2

(79)

If the constants BI, + n ,0+
IftecntnsB, 0 ' Bln' B 3 ,0 and B 3n are known,

Eqs. (78) and (79) represent two integral equations for the

two unknown aperture field distributions. If the output

waveguide is matched and there is no excitation incident

from the negative z direction, B3 0 and all B3n will be

zero. The numerical solution technique described in Chapter

III may be applied to each equation in order to obtain ex-

pansions of the form of Eq. (54) for each aperture electric

field.

Aperture electric field distributions have been calcu-

lated for two different size two-port cavities at two fre-

quencies for each cavity and the results are presented in

Figures 15 and 16. The two cavities that are treated are

symmetric in that the radii b and d as depicted in Figure 14
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are equal. The two frequencies are chosen such that one is

below and the other is above the cutoff frequency for the

first higher-order mode in the larger section of wave-

guide. The curves in Figures 15 and 16 display more variety

than the aperture distributions shown in Figures 11 and 12

which are for similar-size step discontinuities. The distri-

butions in Figures 15 and 16 do, however, possess the same
1

characteristics of decreasing in magnitude as 1 at points

near the center conductor and then increasing without bound

as the discontinuity is approached. In contrast to the

aperture distributions for the one-port cavity, there are

examples of real and imaginary components crossing the zero

axis.

The approximation for the aperture field at z = s

allows the calculation of the input admittance of the cavity

at that point through the use of Eqs.(50) and (53). A

similar expression may be obtained for the input admittance

looking into the cavity at z = t by accounting for the direc-

tions of wave propagation. Calculated values of input admit-

tance are presented in Table 10 for two different size

cavities as a function of frequency. The admittances are

computed both from solutions to Eqs.(78) and (79) and from

transmission line theory with susceptance corrections from

an expreission in the Waveguide Handbook. The latter cal-

culations are valid only for frequencies below the cutoff
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frequency of the first higher-order mode in the larger cav-

ity. Comparisons between calculated admittance values and

measured ones for a two-port coaxial cavity are presented in

Chapter VII where the experimental procedures are also de-

scribed.

The approximations for the aperture fields may be used

to calculate the field anywhere in the three regions by using

the appropriate form of Eq.(63), (64) or (65) with the cor-

responding expressions for the constants in these equations.

In Chapter VIII, calculated and measured internal field com-

ponents at the inner surfaces of the end plates of a two-port

coaxial cavity are presented. Comparisons between calculated

and measured impedance and field data make possible quanti-

tative assessments of the accuracy obtained with integrals

of the aperture field solutions. A more direct validation

of the accuracy of the aperture field solutions is not with-

in the scope of this effort. Calculated values of the impe-

dance and distributions of field components do provide a de-

finitive estimate of the usefulness of the integral equation

solutions since these quantities are of particular interest

when characterizing a waveguide section or cavity.
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TABLE 10. CALCULATED ADMITTANCE OF A TWO-PORT COAXIAL CAVITY
(NORMALIZED BY THE INPUT WAVEGUIDE)

a - c/6 b a c/2 d - 3c

C/X wavecuide Handbook Integral Equation

0.0010 0.99944272 - j0.01812500 1.00196814 - j0.01813840

0.0100 0.94773463 - J0.16771975 0.95022001 - j0.16784703

0.0500 0.48852657 - J0.21444090 0.49048806 - j0.21455535

0.1000 0.39078594 + J0.15363671 0.39245002 + j0.15414453

0.2000 0.70760169 - J0.21443225 0.71040425 - J0.21394403

0.3000 0.53118295 j 30.48006425 0.53239471 * jO.48203314

0.4000 0.41303114 + jO.04664547 0.41447072 * jO.04752152

0.5000 1.00000000 + jO.95965646 1.00239613 J 30.95982762

0.5600 0.30982384 + J0.47922307 0.40973071 + jO.37257491

0.5817 Cutoff Freq 0.62882691 + j1.31400852

0.6000 Above Cutoff 0.28442809 + j1.19896375

0.7000 Above Cutoff 1.22676713 + j0.26613012

a - c/2 b - 2c/3 d - 3c

c/X avequide Handbook Integral Equation

0.0010 0.99933581 - 30.03663773 0.99847306 - 30.03663551

0.0100 0.85851552 - jO.30720201 0.85865845 - jO.30718608

0.0500 0.24412759 - 30.21118345 0.24422795 - j0.21110388

0.1000 0.18450972 + 30.14622063 0.18457563 + 30.14642800

0.2000 0.40485674 - 30.2863525S 0.40510632 - j0.28601009

0.4000 0.18984262 + J0.045510:6 0.18990183 + 30.04635422

0.5000 1.00000000 + 30.50189935 1.00013674 + J0.50467629

0.6000 0.15744697 + J0.38570238 0.15731578 + 30.38731123

0.8000 0.21939101 + J0.88059348 0.21886714 + J0.88348416

0.9000 0.12703252 + 30.61676062 0.12713311 + J0.61875045

0.9945 Cutoff Freq 0.60087728 + J5.25158940

1.1000 Above Cutoff 1.21393128 - J0.29987103
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CHAPTER V

INTEGRAL EQUATIONS FOR PARTITIONED CAVITIES

A. Introduction

In the preceding chapter, it is demonstrated that the

same general form applies for both of the coupled integral

equations for the aperture electric fields which are present

when two planar discontinuities are placed in a coaxial

waveguide. This general form can be used to formulate the

appropriate coupled integral equations for any combination

of two of the discontinuities depicted in Figures 3 and 4.

In this chapter, it is shown that with one additional

general form of an integral equation, it is possible to

treat any combination of planar discontinuities with no

limit on the number. The use of such a procedure is demon-

strated by placing annular disks within the geometries de-

picted in Figures 5 and 14 such that the cavities are further

partitioned into two regions which are coupled through the

aperture in the partition.

B. Field Components for a Partitioned One-Port Cavity

The one-port, partitioned cavity depicted in Figure 17
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is formed by placing a shorting plate across Region 3 of the

two-port cavity of Figure 14. An annular disk is attached

to the outer conductor at the junction of Regions 2 and 3 to

make the problem more general. The field components in the

three regions are described by Eqs. (63)-(65) with the

accompanying definitions in Eqs.(66)-(69). The unknown

aperture electric fields in each of the two discontinuities

are designated E 1 and E 2 with the same definitions as given

by Eqs. (70a&b). The expressions for the unknown constants

in the field expansion for Region 1 are given by Eqs. (75a&b).

The expressions in Eqs.(76a-d) are applicable to Region 2 if
2 2 r hne

the limits of integration for 1 and I2 are changed from

(a,d) to (a,g) to reflect the presence of the annular disk.

The constants for the field components in Region 3 are de-

rived in the same manner as for the interior region of the

one-port cavity in Chapter II. The constants have the same

form as those defined in Eqs.(47) and (48) and are given by

the following expressions:

B ±e±jk 3u 2
3,0 .d 0(Baj2sink3 (u-t) lnI

=±e +± 3n u 2
B3n j2sina3 (u-t) S2 3n (80b)

3n
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C. Integral Equations for the Aperture Fields

Two coupled integral equations for the transverse elec-

tric field components in the two apertures of the geometry

depicted in Figure 17 are obtained by constraining the trans-

verse component of magnetic field to be continuous across

both apertures. The first integral equation, which is ob-

tained for the aperture connecting Regions 1 and 2, is

given by Eq.(78) with the previously mentioned changes to
2 12 Ti ste po

the limits of the integrals 10 and 1n" This is the appro-

priate form of the integral equation for an aperture which

faces another discontinuity in one axial direction and an

infinite waveguide in the other direction. The aperture

connecting Regions 2 and 3 faces discontinuities in both

axial directions, thus a slightly different general form is

required for the integral equation. This equation is ob-

tained by requiring H2(p,t) = (P't).

1 1x -e- jk 2 (t-s) 12 _ eJk 2 (t-s) 2 +

j2sink2 (t-s) T 2p Inc 0 0 0 1J

+ k 2  1 e- Ja2n(t-s) I2

+ 2 n=l j2sina2 n(t-s) a 2nM 2 2n 2n

eja 2 n(t-s)1
2 + il d 2 n

2n 2n] -d-
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20 (ejk3 (u-t) + e-jk 3 (u-t)

j2sink3 (u-t) n3
p in d

33 3 12 a

+ _ [3n eJ3(U-t) + eJa n(U-t) d 3n2
ja3n, + e 3n t 3n d

"3 nl j2sina 3n (U-t) a 3nM3n dp

As can be seen, this equation contains no unknown constants.

Collecting terms yields

+ 12 cos 2 n (t-s) - 0

T2 n-l jsin 2 n(t-s) a 2n 2n dp

1 2 cosk3 (u-t) k co 1+2 Cosa (U-t) d ( 8+ I0 3 _+ 3 3n °S3nU- d 3n(81

jsink3 (u-t) n3 p In d  3 n=1 jsina3n(U-t) a3n M3n

Because the discontinuity at z = u has no aperture, Eq. (81)

does not represent the most general form of the integral

equation for an aperture which faces discontinuities in both

axial directions. The most general form will be derived in

the next section where a partitioned, two-port cavity is

treated.

If the constants B and B+ are known quantities,
1 ,0 in

Eqs. (78) and (81) represent two integral equations for the

two unknown aperture field distributions. Solutions for the

aperture fields may be obtained by application of the numer-
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ical procedure described in Chapter III. Aperture electric

field distributions which have been calculated for two

different size partitioned, one-port cavities at two fre-

quencies each are presented in Figures 18 and 19. The two

radii c and d in Figure 17 are equal for each of the cavities

but the apertures are of different size. One of the fre-

quencies is above and the other is below the cutoff frequency

jr the first higher-order mode in the larger section of

waveguide. The aperture distributions are very similar in

form to those shown in Figure 8 for the annular disk and in

Figure 12 for the simple one-port cavity. The singular be-

havior of the distributions differs in the two apertures be-

cause of the different geometry of the discontinuities. No

zero crossing of the real or imaginary parts is observed,

as was the case in Figure 12 for the simple one-port cavity.

The input admittance of the cavity can be computed from

the approximate solution for the aperture electric field at

z = s. Calculated values of input admittance are presented

in Table 11 for two different size cavities as a function of

frequency. As in previous examples, the admittance values

are computed both from solutions to integral equations and

from transmission line theory with susceptance corrections

from the Wavequide Handbook. The admittance data appear

to support earlier observations that the transmission line

theory with corrections is more accurate than the integral
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equation approach for geometries where the aperture is a

significant percentage of the radius of the larger section

of waveguide. The integral equation solutions appear to

give better results than the transmission line theory when

the aperture is a comparatively small part of the waveguide

radius. There is a pronounced peak in the input admittance

at frequencies where there is an axial resonance. The cal-

culated admittance at these frequencies has a real part that

is much greater than zero but is still many orders of magni-

tude smaller than the imaginary part. These calculations

actually give only a qualitative description of the admit-

tance at axial resonance because the value actually approaches

infinity. The numerical error introduced by the digital com-

puter allows a calculation to be made.

D. Field Components for a Partitioned Two-Port Cavity

A two-port partitioned cavity may be created from the

geometry depicted in Figure 17 by removing the shorting plate

at z = u and connecting Region 3 to an infinitely-long section

of waveguide of a different size. Such a cavity is illustra-

ted in Figure 20. The field components in the four regions

are described by Eqs.(63)-(65) with i now equal to 1, 2, 3 and

4. The unknown aperture electric field at z = u is defined

3 4 3E (p,u) E (p,u) = E
p p a (82)
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TABLE 11. CALCULATED ADMITTANCE OF A PARTITIONED, ONE-PORT
COAXIAL CAVITY (NORMALIZED BY THE INPUT WABEGUIDE)

a -c/2 b - 2c/3 d - Sc/6 x - 3c/2 y - 3c/2

CA Waveguide Handbook Inteqral Equation

0.0010 0.0 + j 0.04542289 0.00000014 + j 0.04541979

0.0100 0.0 + j 0.46065099 0.00001455 + j 0.46062760

0.0500 0.0 + j 3.61464770 0.00089707 + j 3.61712020

0.1000 0.0 - j 5.20242693 0.00184342 - j 5.18534685

0.2000 0.0 + j 2.49915937 0.00043327 + j 2.51429549

0.4000 0.0 - jll.66961875 0.00889162 - jli.39779337

0.5000 0.0 + j 0.62501141 0.00002848 + j 0.64550426

0.6000 0.0 - j 2.00806112 0.00027188 - j 1.99606828

0.8000 0.0 - j 0.41045183 0.00001040 - j 0.39189766

0.9000 0.0 - j 1.21202495 0.00009623 - j 1.19927743

0.9945 Cutoff Freq 0.00000000 + 2 0.00008060

1.1000 Above Cutoff 0.00022378 - j 1.81561836

a c/2 b - 2c/3 d = 5c/6 x a 2c x = c

c/X Waveguide Handbook Inteqral Equation

0.0010 0.0 + j 0.04542285 0.00000014 + j 0.04541974

0.0100 0.0 + j 0.46059965 0.00001454 + j 0.46057495

0.0500 0.0 + j 3.59553783 0.00088736 + j 3.59749163

0.1000 0.0 - j 5.37370058 0.00196982 - j 5.36010579

0.2000 0.0 + j 2.52256821 0.00044187 + j 2.53908775

0.4000 0.0 - J12.30740830 0.00992517 - J12.04200640

0.5000 0.0 + j 0.00000000 0.00000000 + j 0.00000000

0.6000 0.0 - j 1.95779087 0.00025766 - j 1.94321006

0.8000 0.0 - j 0.52793367 0.00001805 - j 0.51626468

0.9000 0.0 - j 1.29588364 0.00011173 - j 1.29207960

0.9945 Cutoff Freq 0.00000000 - j 0.00020133

1.1000 Above Cutoff 0.00001291 - j 0.45044112
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The expressions for the unknown constants in the field ex-

pansions for Regions 1 and 2 are the same as for the one-port,

partitioned cavity. The constants for Region 3 are defined

similarly to those of Region 2 since the region is bounded on

both ends by apertures.

B+ = 1 t+i 2 e j 3e±k3t.8a
3 j2sink (u-t) lnd  e-Jk3 u 13 e-+k 3 t3 (83a)

3 a

B -=1 I2 e -J%3nu  13 e -Jn (83b)

3n j2sint (U-t) M 2 -3n 3n .3n3b
3n 3n

The expressions for the constants in Region 4 are similar

to those defined in Eq.(74)%

B = ejk4 u 1 3- B_ 0 ejk4 u (84a)B4, 0  0 48a

B +  e j4nu 13 - B eja4nu j (84b)
4n M e24 I4n B4n

E. Integral Equations for the Aperture Fields

The structure depicted in Figure 20 has three apertures

with unknown fields, and, by following previously established

procedures, one can derive three coupled integral equations

for these unknown fields. The equation for the aperture at

z - s is again given by Eq.(78). It is apparent at this

point that the form of Eq. (78) is not influenced by any
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geometrical features beyond the discontinuity at z = t, al-

though the final solutions for the aperture fields certainly

are. The aperture at z = t faces discontinuities containing

apertures in both axial directions. The integral equation

appropriate for this aperture is the most general of the

equations to be developed for treatment of such apertures

in discontinuities. The equation is obtained by requiring

that H2(Pt) = H (P't):

0= c (I~ cosk (t-s)- J
jsink2 (t-s) n2  S a

1 2 fIn cosa 2 n(t-s) - Iln) d 2n
2 n=l jsint 2n(t-s) a 2nM2 n

+ 1 ok Ut - 1 23jsink3 (u-t) n3  nd  3 0

I cosa (U-t) 2 3n.(85)

n=l jsint 3n(U-t) anM 2 n 3n 3n dp

The fact that weighted integrals of all three aperture

fields appear in Eq. (85) clearly demonstrates the interdepen-

dence of these fields. If more apertures were added, the

interdependence would still be present although integrals of

all aperture fields would not appear in the same equation.

The integral equation obtained by constraining continuity of
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the transverse magnetic field across the aperture at z = u

is of the same form as Eq.(79) and is given by

2 B 0 eJk 4u k4 2B4n ej 4n d4n

n4P Y14 n=l 4n dp

1 k4 13 d
S 0 4nM2 4n dp
a4Pln n 1 a4 n d

j sink(ut ln- 0i ok 3 (u-t) 0jsn3(u-t) n3p an

k 3 0 1 1 3 Cs n(U-t) - 12 "3n(86)
73 n=l jsina3 n(U-t) a3nM3n

With the assumption that the constants B+  + -1,0' Bln B4 ,0

and B4n are known quantities, Eq.(78), (85) and (86) form the

set of equations necessary to obtain solutions for the three

unknown aperture fields. The numerical technique of Chapter

III is again suitable for obtaining solutions. There is no

additional difficulty involved with treating three simultane-

ous equations beyond the "bookkeeping" problems. Simple

logic advises that the optimum solutions for a given total

number of expansion pulses would be obtained by dividing

each of the apertures into pulses that are of approximately

equal width. This effect actually is diminished significantly

because the equations involve integrals of the aperture
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fields. It has been demonstrated in earlier tables of admit-

tance values that the integrals of the aperture fields are

not very sensitive to the number of expansion pulses (above

a usually small minimum number). The result of this situa-

tion is that very good solutions can be obtained with pulse

distributions that vary widely for different apertures of

the same cavity configuration. If there were reason to con-

centrate attention on one cavity region, the non-adjoining

aperture could be adequately treated with comparatively few

expansion pulses.

Aperture electric field distributions which have been

calculated for two different size, partitioned, two-port

cavities are presented in Figures 21 and 22. These cavities

have been created by adding annular disks to the outer con-

ductors of the two-port cavities of Figures 15 and 16 s0

that the effects of partitioning such cavities can be ob-

served. The resulting aperture distributions are very fre-

quency dependent as the first transverse resonance fre-

quency is approached and for frequencies beyond. A quali-

tative idea of the aperture field variation with frequency

can be interpreted from the comparisons of measured and cal-

culated field components in Chapter VIII which are given for

a number of frequencies.

The input admittance at either port can be computed from

the approximation to the aperture electric field at that port.
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In Table 12 comparisons are presented for admittance values

calculated from solutions to integral equations and computed

from transmission line theory with susceptance corrections

from the Waveguide Handbook. This data again appears to

demonstrate that the integral equation approach is superior

to the transmission line approach when the aperture is small

enough that the singular behavior of the aperture field

caused by the discontinuity is seen over most of the aperture.
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TABLE 12. CALCULATED ADMITTANCE OF A PARTITIONED, TWO-PART
COAXIAL CAVITY (NORMALIZED BY THE INPUT WAVEGUIDE)

a - c/2 b - 2c/3 d - Sc/6 x - 3c/2 y a 3c/2

c/ Waveguide Handbook Inteqral Equation

0.0010 0.99834364 - J0.03646526 0.99889305 - jO.03645737

0.0100 0.85913835 - J0.30578823 0.85970885 - J0.30573056

0.0500 0.24708957 - j0.20829428 0.24755160 - J0.20801032

0.1000 0.19468650 + J0.15497574 0.19523825 + j0.1556187 3

0.2000 0.33681097 - j0.26536484 0.33590023 - j0.26378041

0.4000 0.21549346 + j0.06722641 0.21648982 + J0.07016078

0.5000 0.96235858 - j0.06022518 0.95726980 - jO.06694721

0.6000 0.12576944 + jO.43536054 0.12489168 + jO.44122015

0.8000 0.58503247 + jl.01100177 0.59984037 + jl.02307863

0.9000 0.06010651 + jO.77547372 0.05651798 + J0.79681264

0.9945 Cutoff Preq 0.52758674 + j6.67688686

1.1000 Above Cutoff 0.94391508 + jO.03856458

a - c/2 b - 2c/3 d - 5c/6 x - 2c x = c

C/). Wavequide Handbook Znteqral Equation

0.0010 0.99834625 - JO.03646544 0.99889565 - J0.03645841

0.0100 0.85932100 - jO.30592364 0.85989129 - J0.30587505

0.0500 0.24701063 - jO.21024318 0.24745830 - J0.21000502

0.1000 0.19266498 + jO.14812225 0.19314166 + J0.14879100

0.2000 0.35572846 - J0.23677548 0.35517085 - J0.23466776

0.4000 0.15438273 + J0.06244383 0.15359618 + J0.06533893

0.5000 1.00000000 + J0.59496446 1.00054745 + 10.60669547

0.6000 0.20108709 + J0.39082365 0.20211057 4 J0.39476634

0.8000 0.46097070 + J1.23927333 0.47402267 + J1.24904843

0.9000 0.06190716 + J0.71737474 0.06739482 + j0.72441466

0.9945 Cutoff Freq 0.60245035 + j5.48157554

1.1000 Above Cutoff 0.23160684 + 10.48464206
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CHAPTER VI

INTEGRAL EQUATION FOR A TRUNCATED COAXIAL INNER CONDUCTOR

A. Introduction

The discontinuities which are the subjects of the anay-

ses in the preceding chapters are all coaxial in nature. It

is demonstrated that, in theory, any combination of planar,

coaxial discontinuities can be treated by proper application

of one or more of the general equation forms developed in

Chapters II, IV and V. An additional type of discontinuity

is formed by truncating the center conductor of a coaxial

waveguide and it can be treated by a similar approach to

that used for the coaxial discontinuities. The analysis

for such a structure is presented in this chapter, and it

is subsequently demonstrated that the expressions which are

derived for the circular waveguide region are analogous to

those derived for the coaxial regions, noting that there

are no corresponding TEM terms. This fact facilitates the

derivation of int gral equations for waveguides where the

previously-treated discontinuities and the truncated center

conductor are mixed.
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B. Expressions for Field Components

A coaxial waveguide with a truncated inner conductor is

depicted in Figure 23. The outer radius of the waveguide is

also reduced in the plane of the truncation to demonstrate

that other discontinuities can be treated simultaneously.

For Region 1 (z < s), the field component definitions of

Eqs.(17)-(22) are appropriate. For the circular waveguide

region, (z > s), the field components must be derived from

an appropriate magnetic vector potential which is a solution

to Eq.(1). The axial component of magnetic vector potential

is sufficient to provide a complete field definition, as is

demonstrated for the coaxial case in Appendix A. The mag-

netic vector potential component is defined as the product

(no variation with ):

Ac (pz) = Rc (p) Z(z) (87)

z

where the axial function, Z(z), which satisfies Eq.(2), has

the form

Z(z) = c1 e-Jkz z + c 2 ejk zz (88)

and the radial function, Rc (p), is a solution of Eq.(3) and

has the form

Rc (P) = c3 J0 (kpp) + c4 N0 (kPp) (89)

The boundary condition that the field have a finite

value at p = 0 eliminates N0 (k p) as a possible solution.
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A second boundary condition requires that the tangential

component (in this case, E ) of the electric field be zero

at the inner surface of the waveguide (at p = c). The re-

sulting function is

Rc (p) = c 3 J0 (Xnp) (90)

where the An are the infinite set of k which satisfy

J0(Xnc) = 0 , n = 1, 2, ... (91)

The eigenvalue representation for kz is now given by

2 2 = k2  
2

kz = n n

The following definitions for 8n are used

8 2 _2 2 >2
n= k2  n 'k 2  An (92a)

Vn _ j 2 - k 2 41 X 2 > k 2( 9 b
n n - k 2  n n  k2 (92b)

The resulting expression for the magnetic vector potential is

c + -i z -ja z
A (P,z) = (cn e-n + cn eJnZ) J(X p )  (93)z n=l n 0 (n

The field components for Region 2 can now be computed from

Eqs.(ii), (12), and (13) operating on Eq.(93). The resulting

expressions are

96
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E0 a (-c + e-JnZ + c- eJnz) {- J(nP)

Ez2 _ X ni(k 2 - 82) (c~n e-J8 nZ + CneJ~Z 0X2 ~ n n n 1 (nP

k2  =2 1- n I (k 2- 2 )cZ e j zj

expressions a more standard form:

22

+ ck +94()
2n n n

n n

and

c (94b)

The field components are now given by

E 2 = n X (C+ e -JnZ + Cn e JnZ) J1 (XnP) (95)

P n=i n n n

E~ Jnl[  n (Cn+ e-J~nz _ Cn eJ8 n) j 0 (Xnp) (96)

2 X + -Ja z C j  z

E -- n -zj(Cen n C -n e n ) J(Xnp) (96)nil n

C. Definitions of Constants in Field Expressions

The procedure to obtain useful definitions for the un-

known constants of Eqs. (95)-(97) employs similar orthogo-
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nality properties to those of the method used in Chapter II.

The first step is to multiply both sides of Eq.(95) by

p J1(;kmp) and then integrate both sides over the interval

(0,c). This yields

E2 p J1 (Xmp) dp = (98)

0 c -Xn(Cn e-Jn + C- eJn )  Jl(XmP) Jl(Xnp) dp , m=l,2,...0 n-l n 1 "

Because of the orthogonality properties of the integral on

the right-hand side, Eq.(98) has zero value except when m = n.

The constants may now be defined by

C + C eJn s = 1 CE 0 p l(Xnp) dpn _[nc P 1(np ] 2d a a 1n

- J0 (99)

where the radial component of the electric field in the

aperture is defined by

2()= Ea 0 a < p < c

Ep (P) a(100)
Ep 0 ,0 < p < a OO

The normalization integral in Eq.(99) has the value:

-X P[JI(XnP)] 2 dp C 2 (Xnc) (101)
n J In ~ n -T- J1 nc8
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D. Enforce Continuity of Transverse Fields in the Aperture

An equation containing the integral of the unknown aper-

ture electric field is obtained by constraining the trans-

verse component of magnetic field to be continuous across

the aperture, i.e., H1(p,s) = 2 (Ps). This yields

e-Jl s  eJkl s  k 1 js s

0e n P eJns) dn0 nln=l an dp

S 2 X n n (C+ e-Jn s  -  Cn eJn s )  Jl(Xnp) p(a,c). (102)

An integral equation appropriate for the geometry of Figure

23 is easily obtained from Eq.(102) if the waves incident on

the aperture from both directions are fully defined. As an

example, assume that the excitation traveling in the +z

direction in Region 1 consists of a TEM wave with amplitude
+

B 0  The existence of only a TEM mode implies that all the

Bn = 0. It is also assumed that the waveguide on the right-

hand side of the aperture is either infinitely long or termina-

ted in a matched load, either of which implies that all the

Cn = 0. The resulting integral equation for the coaxial wave-

guide with a truncated inner conductor is, from Eq.(99),
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Bel 1 o
2 ip  nip in! faEa dp

a

-1 k p dp (p)
n ni 2M a d dpn n

2= 22  E~ ac2 J1(XC) nE p J ) dp J1 (XnP) (103)

i2n n i Xn c) a)

E. Application to a One-Port Cavity

The geometry depicted in Figure 24 possesses two discon-

tinuities: the first, at z = s, is the now-familiar step-

discontinuity in the outer conductor of a coaxial waveguide:

and the second, at z = t, is the truncated center conductor

of a coaxial line. The two unknown aperture field distribu-

tions are obtained from solutions to a pair of coupled inte-

gral equations which are derived according to previously de-

termined procedures. It is convenient to define the field

components in Regions 1 and 2 with the expressions in Eqs.(63)-

(65) with i = 1 and 2. The constants in these expressions are

defined in Eqs.(7i)-(73) where the notation for the weighted

integrals of the aperture fields retains the same meaning.

The field components for Region 3 are given by Eqs(95)-(97)

where the subscripts and superscripts which denote parameters

corresponding to a particular region are changed from 2 to 3.

The constants in Eqs.(95)-(97) are evaluated by application

of the boundary condition requiring zero tangential electric
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field on the plate at z = u. These constants, which are

analogous in form to those defined in Eq.(48), are given by

+ ± =_e -Jen U d E2 PJ( )d 14
n  _Jxnd2 sin (Ut) aa p J2 ( dp (104)

n n 1u-t

The first of the required pair of integral equations is given

by Eq.(78) with z = s. The second integral equation, which

results from the substitution of the proper expressions for

the constants into Eq. (102) with z = t, is quite similar to

Eq. (81):

0 = 1 0 cosk2 (t-s) - Il0
jsinj 2 (t-s) n2 p n2

"2 n=l jsinac2n(t-s) a 2n M 2( n 2n n dn

k dcon  j2(Xn d Ea 2 P JI(Xnp) dp J XP) 

n-l LjsinB ut d 8 n 1 Xn d)a

(105)

where the X are the solutions ton

J0(Xnd) = 0 , n = 1, 2, ...

and the Sn are defined by Eq.(92).

It is a straightforward procedure to combine the dis-

continuity depicted in Figure 23 with any or all of the

coaxial discontinuities illustrated in Figures 3 and 4 to

create an arbitrarily complex cavity structure. The equa-
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tion for the truncated center conductor would be included

where necessary to obtain a tractable set of integral equa-

tions. A similar treatment of the junction of two circular

waveguides of differing radii can be accomplished with a

simple extension of the material presented in this chapter.

Such a configuration was not of interest during this inves-

tigation primarily because circular waveguides do not sup-

port the TEM mode.

F. Numerical Solution Considerations

The numerical procedure employed to obtain solutions to

Eqs.(103) and (104) is, in principle, the same technique de-

scribed in Chapter III. The expansion for the aperture elec-

tric field defined by Eqs.(55) and (56) is appropriate. The

resulting integral is easily evaluated to yield

d N N frq + A/ 2

fl Eq Pq(P) J1 (Xnp) dp 1 1 E q J1(Xnp) dpa ql q=l r q-A/2

N - [ n( -+ J (X r )] (106)

q=l q n

where

Srq = rq + 6/2

rq = rq - A/2

The testing function set given by Eq. (61) is used to
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generate the N algebraic equations necessary to obtain a

solution for the aperture field. The two sets of algebraic

equations obtained from Eqs.(78) and (105) are sufficient

to obtain solutions for both aperture electric fields when

the constants of Eq. (78) are defined. In Figures 25 and 26

are presented calculated aperture field distributions for the

coaxial-to-circular waveguide junction of Figure 23 without

the step in the outer conductor and the one-port cavity of

Figure 24.

G. Susceptance of a Truncated Center Conductor

The lumped TEM susceptance introduced into a transmission

line when the coaxial center conductor is truncated can be

calculated by following the procedure described in Chapter II.

Once the aperture distribution is obtained, its integral can

be used to evaluate the voltage reflection coefficient through

Eq.(54) and the susceptance can then be computed with the aid

of Eq.(51) where the characteristic admittance (in the TEM
+

sense of the circular waveguide section, Y0 is equal to zero.

The resulting expression is

jB= 1- r(s) (107)

YO 1 + r(s)

The expression on the right-hand side of Eq.(107) is the

definition of the normalized admittance at z = s expressed in

terms of the voltage reflection coefficient. For frequencies
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below the cutoff frequency for the first propagating mode in

the circular waveguide, the TEM admittance is imaginary. At

frequencies above cutoff for one or more circular waveguide

modes, a portion of the incident energy is converted to a

propagating mode(s) in the circular waveguide. Under the

latter circumstance, the admittance is complex. Whereas

previous susceptance expressions are generally applicable to

TEM waves incident from either direction, the expression in

Eq.(107) is only valid for a TEM wave incident from the

coaxial waveguide side of a truncated center conductor dis-

continuity. In Table 13 are presented TEM admittance values

calculated from solutions to integral equations for four

different ratios of outer coaxial radius to inner radius.

There is no corresponding expression in the Waveguide Hand-

book for comparison, although Marcuvitz does provide a sus-

ceptance expression for a coaxial-to-circular waveguide

junction where the inner conductor is also a circular wave-

guide. The b/X = 0.3827 frequency for each geometry is the

cutoff frequency for the TM01 mode in the circular waveguide.

As for the other planar discontinuities, the admittance has a

non-zero real part when power is converted to propagating

higher-order modes.

As mentioned in Chapter I, the coaxial-to-circular wave-

guide junction has been treated by a number of other investi-

gators. In Table 14 comparisons of calculated capacitance
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are presented for six junctions of varying size along with

measured values for three of the junctions. The integral

equation results are computed with 20 pulses across the

aperture and 30 series terms and with 50 pulses and 50

series terms. The two calculations give a qualitative feel

for the convergence of the integral equation approach. The

integral equation results compare extremely well with the

other values in the table and indicate that this approach

would be very useful when extreme accuracy is desired.
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TABLE 13. CALCULATED ADMITTANCE OF COAXIAL-TO-CIRCULAR WAVEGUIDE JUNCTIONS
(NORMALIZED BY THE COAXIAL WAVEGUIDE)

b/N a - 10 m b - 60 m b/ a - 10 i 30 

0.0100 0.00191089 + jO.01744352 0.0050 0.00040563 * 30.01046958

0.0500 0.00191390 + j0.08771871 0.0250 0.00040576 - 0.05243914

0.1000 0.00192371 + ]0.17870852 0.0500 0.00040616 - j0.105452Zl

0.2000 0.00197098 + 30.38887531 0.1000 0.00040787 - ;0.21573702

0.3000 0.00210462 + jo.71558373 0.2000 0.00041627 - )0.478747'-2

0.3500 0.00231081 + ji.06790249 0.2500 0.000425.1 - :0.65986060

0.3600 0.00240087 + ji.20129638 0.3000 0.00044171 - ;0.92837452

0.3800 0.00291225 + jl.86998604 0.3500 0.00048546 - :1.49467353

0.3827 0.00348897 + 42.55084881 0.3750 0.00057774 - :2.5C984587

0.4000 1.31789521 + :1.45873287 0.3800 0.00065154 - j3.277136
98

0.5000 1.09293073 * jO.44577374 0.3827 0.00090171 + 15.78165555

0.6000 0.7785131 j 0.31616103 0.4000 2.47353062 - )1.29941802

b/ a - 0.001521 b - 0.0025 b/l a - 3 m b - 30

0.0058 0.00019634 + -0.0125616i 0.0050 0.00514131 - j0.0073853C

0.0292 0.00019640 , j0.06296577 0.C250 0.00514312 * +0.03697297

0.0583 0.00019660 + jO.12693355 0.0500 0.00514884 j 0.07423933

0.1167 0.00019744 - j0.26241962 0.1000 0.00517258 j0.15092167

0.1750 0.00019907 + j0.41843924 0.2000 0.00528542 + 30.32521859

0.2333 0.00020206 + j0.61781907 0.2500 0.00539763 + jO.43577291

0.2917 0.00020806 + 30.92164639 0.3000 0.00559469 - jO.58465
8 3 1

0.3500 0.00022628 + jl.64172801 0.3500 0.00605477 + jO.84802125

0.3617 0.00023668 + j2.00888777 0.3750 0.00682852 + jl.19680288

0.3733 0.00025969 + j2.78448222 0.3800 0.00731500 + jl.39072306

0.3827 0.00048351 + 39.88536282 0.3827 0.00841109 + j1.79451644

0.4083 2.38129436 + jO.58735311 0.4000 0.89278293 + ;1.22679813
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CHAPTER VII

ADMITTANCE MEASUREMENTS FOR TWO-PORT COAXIAL CAVITIES

A. Introduction

During the course of the present investigation, two sets

of coaxial cavities were constructed and a number of measure-

ments of the electromagnetic properties of the cavities were

performed. The term "sets of cavities" is used because a

number of interchangeable parts were constructed for each

cavity which allows it to be configured as a simple or

partitioned cavity and, for one set, as either a one- or two-

port cavity. Descriptions of the cavities and interesting de-

tails of their construction are given in Appendix E. It was

found, as anticipated, that the voltage standing wave ratio

(VSWR) on the waveguide feeding a one-port cavity was far too

large to measure accurately. Consequently, the admittance

measurements presented in this chapter are only for the two-

port configuration with one port being excited by an EF

generator and a matched load placed at the other port..

B. Measurement Procedure and Cavity Configuration

A schematic representation of the apparatus used in per-

forming the admittance measurements is given in Figure 27.
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The primary instrument used is a General Radio (now GenRad)

50 ohm precision slotted line. Three quantities were

measured on the slotted line which together provided the

necessary data for calculating the admittance of the cavity

at the discontinuity where the input waveguide joined the

cavity proper (z = s in Figure 14). The first quantity was

the VSWR on the transmission line between the cavity and

the source generator. The second quantity was the location

of a minimum of the voltage on the slotted line. The third

was the location of a minimum of the voltage when an electri-

cal short was placed at the location of the cavity input.

The procedures for measuring this data and the subsequent

calculations of the admittance are described very well in a

number of books and in particular, Ref.[25] which was con-

sulted during this investigation. The results presented in

the next section for each frequency are the averages of cal-

culations made using all the possible combinations of

measured standing wave minima. At almost all frequencies,

this total was nine separate calculations. All measured

values are normalized by 20 millimhos.

The input admittance was measured for three cavity con-

figurations:

1. Simple cavity, no partition

2. Partitioned cavity, aperture diameter = 2.540 cm

3. Partitioned cavity, aperture diameter = 8.006 cm.
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The dimensions of the various cavity sections are given in

Appendix E. During the measurements only an air dielectric

was used in the cavities. The output waveguide, which is a

section of 50-ohm air line, was terminated in a 50-ohm load

at a point 13.472 cm beyond the output port of the cavity.

The admittance was measured at 50 MHz intervals over a band-

width which differed slightly for each cavity. The fre-

quency intervals measured for each cavity configuration are

given below.

Configuration No. Frequency Range

1 300 - 1700 MHz

2 400 - 2000 MHz

3 400 - 1700 MHz

The cutoff frequency for the first higher-order mode (TM01 )

in the larger section of waveguide is 1325 MHz, a point which

is covered by all three measurement intervals.

C. Presentation of Results

The real and imaginary parts of the measured admittance

for each configuration are graphically presented in Figures

28-30. Also plotted on each graph are the real and imaginary

parts of the admittance calculated from solutions to the

appropriate integral equations. In Figures 31-33, the ad-

mittances computed from transmission line theory with
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susceptance corrections are plotted together with the pre-

viously plotted curves. The effects of the size of the ap-

erture in the partition are illustrated in Figure 34 where

the calculated values of admittance for the two cases are

presented together.

The transmission line theory values agree quite well

with the other results for frequencies well below the TM01

cutoff in the larger cavity section; however, the results of

this procedure begin to display significant errors as the

cutoff frequency is approached. The admittances computed

from the integral equation solutions display excellent agree-

ment with measured results at almost all sampled frequencies.

It is very difficult to distinguish any differences in the

two for frequencies below 1900 MHz. It is probable that

measurement error was becoming significant at frequencies

above 1900 MHz. This contention is supported by the results

shown in Tables 15, 16 and 17 where the mean and standard de-

viation for the measurements at each frequency are presented

along with the admittance computed from solutions to integral

equations. The standard deviations of the real and imaginary

parts of the admittance are calculated from the expression

~y 2_N (i2)
Std Dev of y = n=l

N-1
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where

Yn = set of N measurement results

y = mean of N measurement results

The standard deviations for both the real and imaginary parts

of the measured values grow substantially larger as the fre-

quency increases beyond 1900 MHz. The standard deviations

for both parts of the admittance are also large near peaks

in the admittance which correspond to axial resonances of

the particular cavity (length equal to odd multiple of

one-half wavelength). Three of the four peaks on the ad-

mittance curve for the simple two-port cavity can be

identified easily. The axial length of the cavity is equal

to one-half the free-space wavelength at 1000 MHz which is

the location of the first peak. The second peak occurs at

1325 MHz which is the first transverse resonance frequency.

The peak near 1650 MHz is also immediately identifiable,

since it represents the axial resonance of the first higher-

order mode. The fourth peak occurs at 2000 MHz where the

axial length of the cavity is equal to one free-space wave-

length. All of these resonances are characterized by a

zero crossing of the imaginary part of the admittance with

a steep negative slope.

The behavior of the admittance curves for the parti-

tioned cavities becomes more difficult to interpret. The
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one-half wavelength, resonance peak for the total axial

length of the cavity occurs near 600 MHz for both cavities.

The nature of this peak is verified by its occurance in

Figure 34 where the admittance of an unpartitioned cavity

of the same length is presented. Except for the transverse

resonance peak which occurs at 1325 M4Hz for all structures,

the introducti.on of the partitions significantly changes the

admittance response of the two-port cavity above the pri-

mary TEM axial resonance. The most prominent feature of the

admittance curves for the partitioned cavities is a very

large, sharp peak between 1100 and 1200 MHz. The peak

appears to be directly related to the existence of the

partition and its aperture. The value of the peak and its

position vary as the size of the aperture is changed, while

the other features of the admittance curve change very little.

The exact physical origin of this resonance-like peak has

not been explained but it is almost certainly an axial

resonance since it is also described by the transmission line

theory calculations. It is also interesting to note in

Figure 35 the almost precise agreement of the admittance for

the two partitioned cavities between the transverse resonance

frequency (1325 MHz) and 1800 MHz. In this region, the par-

tition has a definite effect, but the size of the aperture

appears to have little influence.
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TABLE 15. CALCULATED AND MEASURED ADMITTANCE OF A
TWO-PORT COAXIAL CAVITY

Freq Integral Eq. Mean of Measured Standard Deviation
MHz Calculation Results

Real Imag Real Imag Real Imag

300 0.0835 -0.1102 0.0589 -0.1164 0.0000 0.0000

350 0.0696 -0.0563 0.0656 -0.0630 0.0000 0.0000

400 0.0614 -0.0076 0.0578 -0.0188 0.0000 0.0041

450 0.0569 0.0379 0.0513 0.0315 0.0000 0.0029

500 0.0552 0.0821 0.0497 0.0712 0.0022 0.0044

550 0.0560 0.1265 0.0546 0.0887 0.0041 0.0088

600 0.0596 0.1726 0.0550 0.1349 0.0007 0.0075

650 0.0665 0.2222 0.0628 0.1917 0.0001 0.0037

700 0.0785 0.2774 0.0677 0.2501 0.0009 0.0089

750 0.0986 0.3415 0.0816 0.3253 0.0009 0.0122

800 0.1339 0.4189 0.1133 0.3993 0.0023 0.0080

850 0.2003 0.5150 0.2047 0.4961 0.0059 0.0120

900 0.3382 0.6278 0.3266 0.5670 0.0091 0.0250

950 0.6370 0.6872 0.6197 0.6744 0.0076 0.0097

1000 1.0325 0.3635 1.0218 0.3036 0.0096 0.0065

1050 0.8430 -0.1719 0.7745 -0.2245 0.0109 0.0104

1100 0.4723 -0.2242 0.4431 -0.2276 0.0012 0.0049

1150 0.2889 -0.1084 0.2706 -0.1172 0.0004 0.0055

1200 0.2164 0.0223 0.1924 0.0186 0.0001 0.0083

1250 0.2195 0.1676 0.2201 -0.0348 0.0138 0.2584

1300 0.4694 0.3747 0.5048 0.3545 0.0029 0.0069

1350 0.2015 -0.4217 0.1410 -0.4259 0.0010 0.0097

1400 0.0069 0.0073 0.0088 0.0275 0.0009 0.0061

1450 0.0014 0.1750 0.0053 0.1892 0.0005 0.0068

1500 0.0021 0.3093 0.0065 0.2467 0.0009 0.00062

1550 0.0104 0.4704 0.0137 0.3974 0.0008 0.0070

1600 0.0747 0.7450 0.0688 0.6659 0.0005 0.0072

1650 0.7550 1.1941 0.6050 1.1892 0.0089 0.0121

1700 0.9587 -0.0166 0.8626 -0.0561 0.0021 0.0070
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TABLE 16. CALCULATED AND MEASURED ADMITTANCE OF A PARTITIONED,
TWO-PORT CAVITY - SMALL APERTURE

Freq Integral Eq. Mean of Measured Standard Deviation
MHz Calculation Results

Real Imag Real Imag Real luag
400 0.1214 0.2097 0.1080 0.2163 0.0003 0.0061
450 0.2177 0.3186 0.1937 0.3445 0.0047 0.0384

500 0.5199 0.3565 0.4668 0.3815 0.0011 0.0120

550 0.6174 -0.1778 0.5174 -0.2553 0.0026 0.0080

600 0.2199 -0.2130 0.1608 -0.2097 0.0003 0.0052

650 0.0937 -0.0790 0.0704 -0.0833 0.0005 0.0053

700 0.0527 0.0228 0.0435 0.0173 0.0000 0.0149

750 0.0360 0.1046 0.0287 0.1186 0.0012 0.0183

800 0.0284 0.1794 0.0257 0.1559 0.0005 0.0735

850 0.0253 0.2565 0.0227 0.2346 0.0008 0.0066

900 0.0252 0.3454 0.0227 0.3387 0.0013 0.0108

950 0.0287 0.4624 0.0283 0.4648 0.0007 0.0100

1000 0.0395 0.6466 0.0422 0.6737 0.0021 0.0130

1050 0.0793 1.0451 0.0908 1.0666 0.0080 0.0855

1100 0.6530 3.2300 1.3069 4.8789 0.0729 0.2019

1150 0.1574 -1.6821 0.1239 -1.3361 0.0126 0.1010

1200 0.0111 -0.4278 0.0134 -0.3652 0.0007 0.0090

1250 0.0026 -0.0541 0.0065 -0.0148 0.0012 0.0061

1300 0.0320 0.3348 0.0408 0.3958 0.0008 0.0066

1350 0.1488 -0.5198 0.1056 -0.4640 0.0010 0.0117

1400 0.0104 0.0087 0.0111 0.0060 0.0010 0.0059

1450 0.0034 0.1760 0.0061 0.1735 0.0006 0.0067

1500 0.0039 0.3101 0.0067 0.3042 0.0005 0.0064

1550 0.0094 0.4669 0.0109 0.4602 0.0008 0.0076

1600 0.0462 0.7258 0.0308 0.7138 0.0007 0.0080

1650 0.5148 1.3673 0.4281 1.4438 0.0072 0.0169

1700 1.1483 -0.1735 0.9656 -0.2007 0.0076 0.0053

1750 0.4774 0.0913 0.3951 0.1521 0.0008 0.0060

1800 0.5003 0.3702 0.4458 0.4568 0.0052 0.0129

1850 0.9779 0.4549 1.1128 0.4568 0.0122 0.0071

1900 0.8825 -0.5633 0.4745 -0.3327 0.0095 0.0271
1950 0.1796 -0.3126 0.5640 -0.4516 0.092 0.1067
2000 0.0407 0.0151 0.1912 -0.3896 0.0232 0.1763
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TABLE 17. CALCULATED AND MEASURED ADMITTANCE OF A PARTITIONED,

TWO-PORT CAVITY - LARGE APERTURE

Freq Integral Eq. mean of measured Standard Deviation

MHz Calculation Results

Real Inag Real Imag Real Imag

400 0.0828 0.1786 0.0631 0.2179 0.0002 0.0062

450 0.1194 0.2703 0.0759 0.1292 0.0007 0.0359

500 0.2178 0.3925 0.1719 0.4055 0.0006 0.0048

550 0.5350 0.4829 0.4575 0.4419 0.0057 0.0012

600 0.8247 -0.1037 0.7436 -0.2050 0.0013 0.0012

650 0.3197 -0.2802 0.2075 -0.2756 0.0011 0.0103

700 0.1348 -0.1311 0.1154 -0.1219 0.0005 0.0165

750 0.0757 -0.0148 0.0439 0.0259 0.0013 0.0225

800 0.0521 0.0753 0.0388 0.1015 0.0006 0.0770

850 0.0415 0.1542 0.0358 0.1423 0.0007 0.0064

900 0.0375 0.2326 0.0291 0.2326 0.0003 0.0126

950 0.0381 0.3199 0.0305 0.3121 0.0002 0.0091

1000 0.0444 0.4307 0.0269 0.4367 0.0010 0.0097

1050 0.0624 0.5986 0.0505 0.5757 0.0026 0.0542

1100 0.1254 0.9411 0.1503 0.9552 0.0037 0.0126

1150 0.8239 2.4444 0.9953 2.6990 0.2599 0.3148

1200 0.3237 -1.5965 0.2454 -1.3653 0.0065 0.0391

1250 0.0133 -0.3077 0.0088 -0.2577 0.0013 0.0074

1300 0.0215 0.2384 0.0206 0.2754 0.0003 0.0076

1350 0.1716 -0.5995 0.0909 -0.5370 0.0019 0.0110

1400 0.0083 -0.0344 0.0094 -0.0370 0.0002 0.0049

1450 0.0026 0.1455 0.01-2 0.4004 0.0026 0.3960

1500 0.0026 0.2815 0.C.55 0.2691 0.0006 0.0053

1550 0.0039 0.4244 0.0089 0.4189 0.0005 0.0084

1600 0.0241 0.6780 0.0196 0.6566 0.0004 0.0091

1650 0.3426 1.3212 0.2680 1.3458 0.0049 0.0158

1700 1.2635 -0.2282 0.9497 -0.3228 0.0153 0.0066



CHAPTER VIII

INTERNAL FIELD MEASUREMENTS IN COAXIAL CAVITIES

A. Introduction

In Chapter II it is demonstrated that the rotational

symmetry of the coaxial cavities under investigation limits

the number of field components excited within the cavities.

With only the E , Ez and H components present inside a

cavity, it is possible to construct probes which do not

couple to multiple field components and to provide access

to the cavity interiors without seriously perturbing the

field within the cavity. These factors have made possible

an extensive program of interior field measurements on all

possible configurations of the two sets of coaxial cavities

described in Appendix E. The field distributions measured

within the cavities are compared to distributions computed

from solutions to the appropriate integral equations for

the same geometries. The measured results serve, therefore,

both as a direct observation of the electromagnetic response

of a given cavity and as a rigorous test of the validity of

the integral equation technique.
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B. Procedures for Measurements Inside Cavity End Plates

It is desirable to perform field measurements in such

a manner that the transmission line from the probe to the

sensing instrumentation does not interact with the subject

field. This may be effectively accomplished by placing

the probe on the surface of a highly-conducting boundary

and allowing the transmission line to exit through and be

shielded by the conductor. Since the cavities under investi-

gation were constructed entirely of brass, several options

for providing shielded access to the cavity interior were

available. The options were to measure at the inner surfaces

of the end plates or on the walls of the inner or outer

coaxial conductors. Boundary conditions constrain E to be

zero on the end plate surfaces and Ez to be zero on the

walls of the coaxial conductors, therefore, it was de-

sirable to choose a combination of measurement locations

which would sample all field components.

The center conductor for the smaller cavity set is

less than one centimeter in diameter which renders it an

impractical probe location. Difficulty of machining argued

against cutting slots in the outer coaxial wall. Con-

versely, it was relatively simple to cut slots in the cavity

end plates for probe access. These slots were required to

be along a radial line in order to provide no interference

with the axially-directed currents flowing through the
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cavity. These radial slots allowed the measurement of both

the Ez and the H components on the front and rear end

plates of the cavities with the front of the cavity being

defined as the end which contains the port being excited.

Radial slots were also cut in the end plates of the

larger set of coaxial cavities. In addition, the center

conductor is large enough to accomodate a moveable probe,

so it was possible to cut an axial slot in this conductor

which extended the entire length of the cavity and beyond.

The axial slot in the center conductor allowed the measure-

ment of the E and H components.

The field probes were designed for operation over a

conducting screen and their size was chosen to achieve an

acceptable balance between providing a measureable signal

and imposing minimal pertubation of the field being

measured. The construction of the probes is briefly de-

scribed in Appendix F. The lead from the probe in use was

connected to one input port (test) of a network analyzer.

The reference input port of the network analyzer was

connected to the RF generator which provided the excita-

tion for the cavity. The network analyzer, configured in

this manner, performed as a vector voltmeter displaying

relative amplitude and phase as a function of position as

the probe was moved along the slot. A schematic diagram

of the measurement instrumentation is presented in Figure 36.
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Field component measurements were made for six dif-

ferent configurations of the smaller set of cavities and

for three configurations of the larger set. As indicated

earlier, only two field components were measured in the

smaller set of cavities while all three components were

measured in the larger set. In the following sections of

this chapter, graphical presentations are given for se-

lected measured field distributions for each of the nine

cavity configurations. In each graph, the field distri-

bution calculated from an integral equation solution is

given for comparison. The calculated distributions have

been obtained assuming an excitation resulting from the

application of a time-varying, one volt potential be-

tween the coaxial conductors (See Eq.30). The amplitude

distributions in each graph have been normalized twice;

the first normalization is by a factor composed of geo-

metrical and excitation constants which cancels the units

and the second is the division of all the calculated

values by the largest value. The peak value of the measured

amplitudes is then set equal to the corresponding calcula-

ted value at the same radial or axial location. The re-

mainder of the measured values are then divided by this

factor. The calculated phase is plotted relative to an

assumed phase of zero degrees at the first point. The
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measured phase is set equal to the calculated phase at the

same point where the amplitudes are made to be equal and

the other measured phase points are plotted relative to

this value.

C. Field Interior to Simple One-Port Cavity

Measurements of the interior field components were

performed for two sizes of one-port, coaxial cavities.

The E and H components were measured on both cavitiesz

and the E component was also measured on the largerQ

cavity. The measurements on the smaller cavity were per-

formed for the frequency band 400 - 2000 MHz at 100 MHz

intervals. For the larger cavity, the frequency band was

400 - 1200 MHz at 100 MHz intervals. There was great

difficilty in obtaining useful measurements of E on the

rear plate of the smaller cavity. This was the only

measurement set during the entire investigation which pro-

duced such difficulty. The problem was based on the ex-

treme mismatch between the input transmission line and

the cavity. Essentially all the incident energy was re-

flected back toward the generator and it was not possible

to safely produce enough power from the generator to yield

meaningful field distributions on the rear plate. The

measurements made on the front end-plates showed far more

variation with frequency than the values measured on the
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rear plates. The latter values were almost frequency inde-

pendent. Representative distributions of Ez and H, on the

front and rear end plates of a simple one-port, coaxial

cavity are presented in Figures 37 - 40. The two letters,

LC, under the small picture of the cavity indicate that the

particular measurement was performed on the larger cavity

set. Such a distinction, with SC indicating the smaller

cavity set, is made for the one-port cavities. All two-port

cavity measurements were made on the smaller cavity set.

D. Field Interior to Simple Two-Port Cavity

A two-port cavity configuration could only be con-

structed from the smaller cavity set, therefore only one set

of such measurements was made. The output waveguide section

was terminated with a 50-ohm load in the same manner as for

the admittance measurements of Chapter VII. The frequency

range of these measurements was 400 to 2000 MHz in 100 MHz

steps. There was no problem in feeding energy into this

cavity configuration and the measurements were made with no

difficulty. Distributions of E and H on the front and rear

end plates of a simple, two-port coaxial cavity are presented

in Figures 41 - 44. The magentic field measurements show some

interesting variations which are predicted quite accurately by

the integral equation calculations
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E. Field Interior to Partitioned, One-Port Cavity

Partitioned, one-port cavities were constructed from both

sets of cavities. Two partitions for each set with different

size apertures were made, thus it was possible to form two

variations of each one-port cavity. The frequency range for

the smaller set of cavities was 400 - 2000 MHz at 100 MHz

intervals. The field components in the larger set were

measured from 400 - 1200 MHz at 100 MHz intervals with a few

additional measurements at 1300 and 1400 MHz. Distribtuions

of Ez and H on the front and rear end plates of several

partitioned, one-port cavity structures are presented in

Figures 45 - 52. The distributions do not differ markedly

from those of the simple, one-port cavity.

F. Field Interior to Partitioned, Two-Port Cavity

It was only possible to construct two-port, partitioned

cavities from the smaller set of cavities, but by making two

partitions with different size apertures, two variations of

such a cavity were formed. The frequency range of these

measurements was 400 - 2000 MHz at 100 MHz intervals. Dis-

tributions of Ez and H on the end plates of both cavity con-

figurations are presented in Figures 53 - 68. The amplitude

and phase curves in many of these figures have a wide variety

of shapes that are predicted very accurately by the integral

equation solutions.
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G. Measurements Along Center Conductor of One-Port Cavity

The most interesting measurements in terms of variety

of waveforms were made at the surface of the inner conductor

of the larger cavity set. The transverse field in a coaxial

waveguide has its greatest intensity at the surface of the

inner conductor and this fact appeared to enhance the quali-

ty of the measurements made there. The spatial range over

which the measurements were made was greater than for the

end-plate measurements which added to the possibility of in-

teresting field variations. The measurements were made for

the simple, one-port cavity and the partitioned, one-port

cavity with two sizes of apertures. The size of the aper-

ture in a particular figure is designated by the letters SA

for small and LA for large immediately following the LC des-

ignation for the larger cavity set. Distributions of E and

H are presented in Figures 69 - 78 for all three cavity

configurations. The integral equation solutions do an excel-

lent job of predicting the amplitude and phase in all cases.

H. Evaluation of Measured and Calculated Results

The primary objective of the field-measurement program

was to provide verification for the accuracy and demonstrate

the utility of the integral equation approach. Sufficient

measurements were made to provide a very good description of

the field in the various cavities in the frequency range
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which extends from below to above the cutoff frequency for

the first higher-order mode in the cavity section. Space

restrictions prevent the presentation of more than a rep-

resentative sample of the entire body of measurements.

A small number of the measurements display evidence of

excessive noise and the strong probability of unwanted fre-

quency harmonics. It was discovered during the investiga-

tion that the generator plug-in used in the 400 - 1000 MHz

band produced substantial frequency harmonics until it had

warmed up for an extensive period. Most of the measurements

where this effect was suspected were repeated, but several

of the measurement sets have unexplained variations from the

calculated values below 1000 MHz but have very good agree-

ment above 1000 MHz.

The great majority of the measurements display very

good to excellent agreement with the calculated field dis-

tributions throughout the measured frequency band. many

times the agreement follows rather complex variations of

both amplitude and phase. The overall impact of the com-

parisons is a very strong verification that the integral

equation approach provides accurate solutions for the aper-

ture fields and, consequently, all other field components

in the cavities that have been treated during this investi-

gation.
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CHAPTER IX

CONCLUSIONS

The primary objective of this investigation has been

to develop a proven and practical technique for determin-

ing the electromagnetic properties of a set of planar dis-

continuities in coaxial waveguides. It is demonstrated

early in this report that a knowledge of the transverse

electric field distribution in the plane of the discon-

tinuity (or discontinuities) is sufficient to characterize

all electromagnetic properties of the structure. According-

ly, the bulk of the analysis has dealt with the derivation

of tractable integral equations which can be solved to ob-

tain these desired aperture field distributions. The

technique for deriving such equations has proved to be

quite general and has been easily extended to the treat-

ment of coupled discontinuities. The general approach has

also been applied to the related problem of the discontinuity

occuring at the junction of a coaxial and circular waveguide

where the coaxial center conductor is truncated.

A significant outcome of this effort is that any of the

coaxial junctions, whether single or one of several forming a
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complex structure, can be treated through the application of

one general equation form. Use of such a general form is

frequently cumbersome and experience has shown that three

somewhat less general equation forms are more practical.

The first of these general forms treats isolated discontinu-

ities, the second treats discontinuities which are coupled

to one other discontinuity, and the third treats discontinu-

ities which are coupled to two other discontinuities, one on

either side. The general equation form for the truncated

coaxial center conductor may be similarly structured with an

obvious limitation on the types of discontinuities to which

this discontinuity may be simultaneously coupled.

The integral equations developed during this investi-

gation have proved to be quite amenable to a straightforward

numerical solution technique. The choice of an expansion

function set for the aperture fields which allows analytic

evaluation of the integrals significantly reduces the number

of machine operations required and thus reduces the effect

of this unavoidable source of error. Another very favorable

factor is that the primary electromagnetic quantities of

interest, e.g., admittance and internal field components,

are computed from the integrals of the aperture fields, and

integration is an operation which tends to reduce the effects

of many distribution errors rather than enhance them.

A significant amount of effort during this investigation
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was devoted to experimental measurements designed to verify

the accuracy of the integral equation formulation and the

numerical solution techniques. The comparisons between

measured and calculated admittance values for three cavity

structures demonstrated extremely good agreement. Signi-

ficant differences between measured and calculated values

appeared only at the highest frequencies measured and it is

very probable that these differences are the result of

experimental error. It is quite interesting to observe the

exceptional agreement of the admittance calculated from

transmission line theory with susceptance corrections from

the Waveguide Handbook at lower frequencies, and then to ob-

serve the fairly rapid breakdown of this method as the fre-

quency approaches the cutoff for the first higher-order mode.

The measurements of internal field components for nine

different cavity structures and subsequent comparisons with

calculated distributions has provided very impressive veri-

fication of the ability of the analytical technique to per-

form such calculations. There is not exact agreement for

every measurement, but there is strong evidence that all

such disagreements result from either instrumentation or

experimental judgement errors. There are no cavity con-

figurations where there is not exceptional agreement between

measured and calculated field distributions for a majority

of the frequencies sampled. The field distributions them-
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selves provide an interesting study. There is generally

little variation in the field distributions except near the

transverse resonance frequencies. There is very little

variation even at this frequency for measurements made at

the rear end-plates of the one-port cavities. Measurements

made on the end-plates of the two-port cavities generally

display a gradual phase variation while the only phase varia-

tions observed for one-port cavity measurements are abrupt

180 degree shifts. If the primary goal of this effort had

been to perform a rigorous chacterization of several cavity

structures, a substantial amount of additional data could

have been generated and interesting comparisons drawn between

field and admittance measurements over the frequency band.

However, the amount of data obtained is more than adequate

to verify the capability of the integral equation approach.

The descriptive term "practical", as applied in the

first sentence of this chapter, can be interpreted to mean

either useful or nrit excessively complicated to use, or,

more likely, a given individual's combination of the two.

A few suggested applications for the results of this investi-

gation are given in Chapter I but this list does not emphasize

possible microwave circuit applications. The demonstrations

of the accuracy of the technique indicate possible appli-

cations in a large area of waveguide design problems where

the expressions in the Waveguide Handbook have been used in
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the past. The integral equation technique has given evidence

of being more accurate for susceptance calculations than the

expressions in the Waveguide Handbook for apertures that are

small compared to the largest radial dimension. Examples

presented in this report indicate that the accuracy of the

aperture field solutions and, thus, the admittance calcula-

tions can be improved by increasing the number of expansion

pulses used up to an, as yet, undetermined number. In-

creasing the number of series terms alone appears to have a

less direct effect on convergence, but a larger number of

pulses does require a larger number of series terms to achieve

convergence. There is very likely a set of coaxial wave-

guide problems where either the requirements for extreme

accuracy or extended bandwidth make the subject approach

extremely appropriate. None of the publications listed in

the Bibliography offer the means for calculating the admit-

tance of coaxial discontinuities when higher-order modes are

capable of propagation. The method of Wexler, Ref.[22],

which can treat higher-order modes, could be modified to

treat coaxial geometries; however, it is very cumbersome to

treat more than a few such modes. It is the hope of the

authors that the existence of this technique will play a role

in de-veloping useful applications for which it is well suited.
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APPENDIX A

COMPLETENESS OF FIELD DERIVED FROM A MAGNETIC VECTOR POTENTIAL

FOR A ROTATIONALLY SYMMETRIC WAVEGUIDE

All planar discontinuities in the coaxial waveguides con-

sidered in the present investigation are surfaces which sup-

port a transversely-directed electric current. The existence

of such current components implies that a field description

derived exclusively from a magnetic vector potential with

only an axial component might not be complete. It is known

that a field description which consists of the linear com-

bination of all possible TEM, TM, and TE modes in a cylindri-

cal waveguide is complete. In the present investigation,

the TEM and TM modes are included so it remains to be deter-

mined whether or not there is possibly a necessary TE mode

contribution to the field.

Within a cylindrical waveguide, all TE-mode field com-

ponents can be derived from the axial component of an elec-

tric vector potential. The electric vector potential must

satisfy the wave equation and for a coaxial region the general

form is (note that the m = 0 term is not included)

F z I L amn Zmn (z) eJm mn (A-l)
m=- n=l
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where the axially-varying function Z(z) is a solution of the

harmonic equation

d2Zmn(z)2
dZ2  + Z(z) = 0 (A-2)
dz 2z

and -mn represents a set of solutions of Bessel's equation of

order m. The form of =-mn is dependent upon the requirement

that the tangential component of the transverse electric field

vanish at the walls of the waveguide. For a rotationally-

symmetric waveguide with symmetric excitation, m must be zero

and Eq. (A-I) becomes

F z(rz) =Il an Zn(z) -n-() (A-3)

z n= 1

The field components derived from this electric vector

potential are

00 a dE ( )= Zn dZ) (A-4)

n=l

H= -j [k22F + 7(7-2F z

,a 2k z + 2Z

-j 2 [k zFz + 0 - +  (A-5)
zz

For the field composed of TEM and TM modes to be incom-

plete, the p-directed current on the transverse surface must

generate a field component which could be derived only from
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an axially directed electric vector potential. A -inde-

pendent, p-directed electric current generates only a P

component of magnetic vector potential, A, and the field

derived from A is given by

-j -2- [k ( .A + a )1

kk

and

1 1
H =- Vx A

11 P

_A
_ 1 P (A-7)

It should be noted that the scalar quantity A is not a

solution to the wave equation and, therefore, is not useful

in obtaining a solution for the field inside a waveguide.

It is useful to note that that the field components described

by Eqs. (A-6) and (A-7) are precisely the same as those ob-

tained from a 0-independent, axially directed component of

magnetic vector potential, A . Furthermore, neither of the

field components described by Eqs. (A-4) and (A-5) has a vec-

tor component that is common to the same field component of

Eqs. (A-6) and (A-7). Therefore, there is no contribution to

the field by a postulated Fz , so none is required for a com-

plete field description.
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APPENDIX B

PROCEDURE TO IMPROVE CONVERGENCE RATE OF BESSEL FUNCTION SERIES

An often productive procedure to increase the convergence

rate of a given series consists of the termwise subtraction

of a second series having a known sum and whose higher-order

terms approach and eventually become equal to the corres-

ponding terms of the first series. The sum of the initial

series is then computed by adding the known sum of the second

series to the series of difference terms. To illustrate the

procedure, assume that the sum F of the following series is de-

sired:

F = f fn (B-l)

n1n=ln

Next assume that there exists a second series with a known

sum G

G = gn (B-2)
n=l

whose individual terms have the following property

lim (fn - gn) = 0 . (B-3)n-no

If both series are convergent, then their sum or difference
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is convergent, and Eq.(B-1) may be expressed

F= I (fn - gn) + G (B-4)
n=l

The difference series converges much more rapidly than either

of the individual series. The rate of convergence is changed

from a dependence upon how rapidly the magnitude of f

approaches zero for increasing n to a function of how rapidly

the individual fn approaches the value of the corresponding

gn"
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APPENDIX C

ASYMPTOTIC FORMS FOR EIGENFUNCTION EXPANSIONS OF FIELD

COMPONENTS IN COAXIAL AND CIRCULAR WAVEGUIDES

A. Introduction

In order to apply the procedure described in Appendix B

to the Bessel function series appearing in the definitions of

the field components in coaxial and circular waveguides, the

behavior of the series elements must be determined for in-

creasing n. The roots of Bessel functions of the first and

second kinds and of the function

n(p) = N0 (Yna)J (Ynp) - J0 na)N0 (np) (C-l)

which is frequently obtained for coaxial geometries (with

inner radius a), are increasing functions of n; i.e.,

7n+l > Yn for n+l > n, where yn denotes the nth root of the

particular function. Since the value of yn increases rapidly

with n, the large argument forms of the Bessel functions

become applicable. The following forms are used:

n cos(YnP - 71 (C-2a)

0 -*oV Ty P n-
_ ' -- V ny sin P- (C2b

0 (n )  n P (yn P  4)(-b
n
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J (Yn0) 2 cos (nP- 4) (C-2c)
in n-m :vyp 4

N (Y p) J 2 sin (y 7 r-) (C-2d)n1 n n-o Yn 4

B. Asymptotic Form for H in Coaxial Waveguide

With the assumption of no variation with 0, the trans-

verse component of magnetic field in a coaxial waveguide is

given by a positive and a negative traveling TEM-mode wave

and an infinite sum of higher-order mode terms:

+ e-Jkz e jk z  k 1B + -"a - janz dP
H 0 B_ 0 + - B n ~B e n nB0  no 0 n---o 7T n=l an(n n dn

where (n and a n are defined by Eqs.(20) and (21), respec-

tively. In this exercise, interest is limited to the higher-

order mode terms which make up the infinite series. For a

coaxial region between two discontinuities located at z = s

and t, t > s, the constants are defined

B + ±e jant b 
0  d$nn j2si M2 hEp d , (C-3)

n n

where the aperture electric field, E , is defined by Eq.(31)

and M2 is defined by Eq.(36). The expression for the totaln

TM contribution to the field is given by

TM k Coa (t-z) ~b as
S nE 0p n dp n (C-4)

n-1 jsin (t-s) aM 2 P=
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The aperture electric field may be expanded in a set of N

pulses as defined by Eqs. (54) and (55). The integral is

then evaluated to obtain

TM~ C Cos CO (t- z) N (r -

HTM k nM 2 E [ (  + n(rD (r den
n=l jsina (t-s) ,an n q=l q q n q

(C-5)
+

where r and r q are defined by Eq. (61). The expression may

be rearranged to the form

TM 0k CE cOSa (t-z) (r) - D (r)2 d

n q=l q n=l jsin (t-s) an M

Attention will now be directed toward the expression within

the braces which is represented by R n(P):

n (r+) - C (r ) dn
R (p) = n _n q (C-6)n M M2  dp

n n

It is the expression given by Eq. (C-6) which determines the

asymptotic behavior of the terms in the infinite series of

Eq. (C-5). The elements of Eq. (C-6) are expanded in Bessel

functions through the use of the definition for M2 and then

following

dn(Pdp - -Y [N (Yna) Jl(y - J0 (Yna)Nl(Yn0)]  (C-7)
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0 (r +) (r (N (ra)J + J - )Nhr+
nq n~ q t 0 (Yna) 0 (nrq) 0 J(n 0N~nrq)

- (N 0 (ya)J 0 (ynrq) - J0(Yna)N0(Ynrq) (C-B)

Substitution of the Bessel function forms into Eq. (C-6)

yields the following expression:

Rn ( 0 ) =  -Yn[N 0 (Yna)Jl(Ynp) - J 0 (Yna)Nl (y)]
Rn 2 22? n 1n 0

nK[-n [N0(-na)Jl("nb) - J 0 (Yna)N (Ynb) I 2  2 _

{[N 0 (ya)J 0 (ynr) - J 0 (Yna)N 0 (Ynr +

- [N 0 (YNa)J 0 (Ynrq) - J 0 (Yna)N 0 (Ynrq ) I} (C-9)

The asymptotic forms of Eq.(C-2) are now substituted into

Eq. (C-9) to yield

R (p)n

S[sin(Ya -  )cos(n--) - coS(a-)sin( n-

O n Y

4b272
nb 37 4 7r.--osY- 2 2
2 2 [sin(Y a-4)cos(y b- -°(a-4)sin(ynb-4-)] - 22abT 2 2

2 1 1 [sin(yn_ 4 c ( n r - ) - coslYna~-)sin(Ynq-j)]

n r
q

S[sin(yna-)cos(y r-'!) - cos(Y a_)})sin(n r (C-10)

q
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The trigonometric identity

sine cose - coso sine = sin(q-e) (C-li)

is employed to reduce Eq. (C-10) to the form

-4siny n (a - Q)+2y] -!-sin[ n (a -rq ) ] - L-sin[- )(a-re)]l

R (o)n q -(
n a"nn a sin 2 [Yn (a-b) -i--il

The expression may be further reduced by noting that

sin(p + .) = cos

which yields

-2cos[yn(a-P) ] sin[y (a-rq )] - -sin[y (a
n q n q

R n(Q) q q
n aV/ yn a b cos2 y (a-b)] - a

As n becomes larger, a n approaches the value -Jy n' yielding

-2COSLY (a-P)]{+sin[Yn(a-r+)] l---sin[yn(a-rq)

R ()2q 2q
ny /P I~ b cos [Yn Ca-b)] -a

As n becomes larger, y approaches the value "-j. The form

of the expression then becomes
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- j2cos[ [i(a-c) ] -!-sin [n7 nar si [n7 (a-rq
b-a b-a q b-a q

r
Rn (P) q q

n 2T 2n~
/S~J b Cos [n' *(a-b)] - a

This expression may be simplified through the use of two

trigonometric identities:

cos 2 (-n) = 1

and

cos. sin& = sin(€+) - sin(4-F)

The expression now becomes

fsin (nl)- sin(nC)
R ( ) 

= - j (b-a) -I - i

S2k .- n2 + nJ
q

1 sin(n? sin(nC4 ))
1-I 2 2 (C-12)

¢ - n n
rq

q

where

- c r+
i = b-q(2a

7T -(rq -
2 b-a q

0 = -(2a - - r)

04 = S-i(rq - o)•

This exercise has demonstrated that the asymptotic (large
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argument) form of the Bessel function expansion for H-"

consists of four series which have the general form:

S(0) = [sin (n® )
S(0) = (C-13)

n=l n

In order to apply the technique described in Appendix B,

another series is required which has a known sum and whose

individual elements have a form similar to those of Eq. (C-13).

In Ref.[26], expression 604 is given as

o sin(n) sin - sinC n{2sin -f 0 < E 2- . (C-14)

n=2 n2_ l 4 1

The procedure of Appendix B may now be employed to obtain a

modified form of Eq. (C-12) which converges more rapidly.

The resulting series expansion for H TM is

TM - k N 00 cosa (t-z) I nr ) - ¢ (r ) d~n(-Y
TM k n En gn qg n
H n iE q -sinan (t-s)[ 2  

dLH nq q n=1 On M

n n

+ j(b-a) 1. fsin(n1) - sin(n 2 ) sin(nO3) - sin(nC4 )
+ n21 2 3 4

rq r
q q

3j(b-a) 1 1 01 1 1
2- 2sinO(Lln{2sin--- ) - s in (ln.2sin.} ) 1

q

1(Sin0 (L-lnj2sin 'I) - sinO (L-lnf2sin~-L) C-

r
q
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Because the series of Eq. (C-14) begins with n = 2, the asymp-

totic terms are not evaluated for n = 1. Care must be taken

that the arguments of the sine functions in Eq. (C-15) be in

the range specified by Eq.(C-14). If the argument falls out-

side the range, the argument can be brought into the proper

range by adding or subtracting multiples of 2- or by emlcy-

ing appropriate trigonometric relationships.

The sine and cosine functions in Eq. (C-5) are not in-

cluded in the derivation of the asymptotic form for two rea-

sons: the first is that these terms are not always present

and the second is that when the terms are present, the' are

easily treated because of the behavior of hyperbolic func-

tions. The behavior of the quotient cosa (t-z)/jsina (t-s)n n

as n increases is primarily dependent on the value of z.

Since a n approaches -jyn for large n, the trigonometric

functions become hyperbolic functions with the following

behavior:

For z = s:

lim cosa n (t-s) lim coshy n (t-s)
n- sinan (t-s) n -jsinhy n (t-s)

For z = 1: s < ; < t

lim Cosan (t-0) lim cos 'n (t-) 0 (C-17)
n o sin n (t-s) n- -jsinhy (t-s)

n n
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An inspection of Eq.(C-5) will verify that the asymptotic

form of Eq.(C-16) normally occurs in conjunction with a 1
3

factor. Since the product of j and is unity, the limitJ

of the quotient cosa n(t-s)/jsinn (t-s) as n increases with-

out bound is unity and, therefore, it does not enter into

TMthe asymptotic form forHT. An even more advantageous re-

sult is obtained when the quotient is of the form given by

Eq.(C-17). These factors approach zero so rapidly with in-

creasing n that it is unnecessary to employ the procedure

of Appendix to obtain rapid convergence.

C. Asymptotic Form for E in Coaxial Waveguide

An expression for the higher-order mode expansion of E

in the same coaxial region for which Eq.(C-4) is defined is

given by

T 0 sinotn (t-z) b 0 d( n  d(D
ETM = i E p P dp n (C-18)

P n=l sina n (t-s) M2n h  d- - do

The only difference between Eq. (C-5) and Eq. (C-18) which

would affect the asymptotic form of the latter is the lack

of the 1/an term found in the former. The use of this fact

allows the derivation of the asymptotic form Sn (p) equiva-

lent to Rn (p) for HT M by multiplying Eq.(C-12) by the asymp-

totic form of an:

lira a n  -
n-oo b-a
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The resulting expression for S (p) is given by
n

Sn(p) - i i sin (nC'l) sin(n0 2 )}n/- n
rq

(sin(nO3 sin(n®4
1--_ _ n .(C-19)

i- n nJ
r

q

The definitions of the 0 are the same as those given for
n

Eq.(C-12). The convergence improving procedure of Appendix

B can now be applied by employing expression number 508 of

Ref.[26]:

Z (rr-®) , 0 < 0 < 2r (C-20)
n=l n

D. Asymptotic Form for Ez in Coaxial Waveguide

The z-directed component of electric field has no TEM

component and is defined entirely by its higher-order mode

expansion. An expression for E which is valid in the same

coaxial region as that for Eqs. (C-4) and (C-18) is given by

c os n (t-z) n d D (C-21)

z n=l jsinan(t-s) n hE
dn nn

The process for obtaining the asymptotic form is begun by

substituting the large argument forms of the Bessel functions

into Eq. (C-21) and results in the expression:
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T 2 [N (ya) 0 (Ynp) j 0 (Yna)N0 (Yp)]T n(P) = b2 2 n 2 2

n[bY [N 0 (Yna)Jl(Ynb)- J 0 (Yna)N0(Y b)]2

{[N 0 (Yna)J0(Ynrq) - J 0 (Yna)N (Ynrq)

(N (Y a)J0(Ynrq) - J (Yqa)N0(ynr (C-22)

After the steps outlined in Eqs. (C-7) through (C-12) are

followed, an asymptotic expression for T (p) is obtained:n

Tn(1) = 1 [cos(nG) cos(nG2).2 47 n n
r

q

1 -o~O3 o~O4 (C-23)

rq

The en are the same as those defined for Eq. (C-12). The

convergence improving procedure of Appendix B may be ap-

plied with the use of expression number 503 of Ref.[26]:

cos(n®) = -ln{2sin } , 0 < 0 < 27r . (C-24)
n=l

E. Asymptotic Form for H in Circular Waveguide

The field in a circular waveguide consists only of

higher-order modes. The field expansion is different from

that of a coaxial region and, consequently, the asymptotic
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forms for the individual field components are different. In

Chapter VI, it is shown that the transverse component of mag-

netic field is proportional to the following expression:

c k 0n (t-z) b E 0 Q j P ) Jl(Xn )
HC kI 2 os 2 2 fa EP n n1 X) J(

H n=l jsina n(t-s) b an J ( nb)
n n 1 n(C-25)

After E0 is expanded in a set of weighted pulses defined by

Eq. (31), the integral is evaluated and a function Q n() is

extracted:

-2J 1 (),n

Q = 2 21 [ P ro) - Jr + r)] . (C-26)nb2 J21 (Xb) 0 nrq 0 nq

Substitution of the asymptotic forms for the Bessel functions

into Eq. (C-26) yields
2 3 2

-2 --L- cos (Xn0-P - )  -2

n n n b2coS(n ro( -nb2n/ 2 2 IT n q-4
n----b cos ( 4U -;[r

n

- - cos(X r (C-27), /--J- ~nrq-  ).(-7

r
q

The trigonometric identity

cosO cose = [cos(O+e) + cos(O-e)] (C-28)

is now employed to yield
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Q -1) 2 f~cos[A (P+r+ )-Tr]
a rXnb /~cos (X b- -) ~V q+

q

+ cos[X (p-r+)-2]} - i- cos[X (p+r )-r] + cos[X PA
n q2n q n q2

r
q

Three additional identies:

cos( -r) =-coso (C-29a)

cos( I = sinO (C-29b)

and

co [cos2o + 11 ,(C-29c)

are used to obtain

Q(P) =-2 I-cos[X (p+r+)]
n a X b vr[-sin(2X b) + 1) n q

n n n r

+ sn( p-r +)II 1 -cos[X (o+r-)] + sin[?k (p-r-]
+5f1n q n q n qf]

rq

For increasing n:

Ct % j (C-30a)

and
__(n-h)T (C-30b)

X n b

The asymptotic form of On (p) is now given by
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Qn(p) - (n-) 2 -2-jb 2  - si[2(n - ) b] +b 1)

sin[ (n-) 'T (r+) (n-) +

q
1 {sin[( b h)T-r(pr)] - cos[ b)7T (p+rq)]--- si [ b ( 1}

r
q

Note that: sin[(2n- )7] = -i

The asymptotic expression for Qn( ) may be presented more

compactly by

Qn(Q) =n-b {sin(n- ) l - c o s (n - ) 2 1

(n-4) Tr 2r n ~ 2q

- sin(n- ) 3  cos(n- )¢4 }] D (C-31)

rq

where

1 = q(o-r)

2 = 1(p+r)

TT -
3 Sto-r q)

and
and= i(p+r )  "
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The use of the trigonometric identies:

sin( -6) = sino cose - coso sine (C-32)

and

cos(O-e) = coso cosO + sino sine , (C-33)

results in the expression

Qn() (--b r{cosl sin(n) sin 1 cos(n ) 1 )

(n- 4)2nv 1T r

- cosD2 cos(nO2 ) - sinD2 sin(nO2 )} - {cos03 sin(nO3 )
424 4

r
q

- sin -P 3 cos(no3 ) - cos (D-4 cos(nD4 ) - sin (D 4 sin(n0 4)0 (C-34)

The procedure of Appendix B may now be applied by employing

Eq. (C-14) for the sine series and one of the following ex-

pressions from Ref.[26]: (The second expression is #605.)

0 2 2
26cos(nP) *TT - + -- , 0 < D < 27r (C-35)

n=l n

0 cos(nD) - + cos4 - (I- )sin , 0 < < 2i (C-36)

n=2 n-1

If the series with n 21 in the denominator are used, the

n = 1 terms are neglected.
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F. Asymptotic Form for E in Circular Waveguide0

The asymptotic form for E can be obtained from that

for H by multiplying the latter by an" For very large n,

(I approaches -j(n-4)n/b, and the subsequent multiplication

of Eq. (C-34) by this factor yields the expression

i ~~- VnP- i

-I 1 cos 1 sin(n€I) - i cos(nh)(n-;4) 4

A

- COS'2 cos(n:,) - sin*2 sin(n¢2)} 1- -I-- cos¢3 sin(n3)
4 2 1- , 43

r
q

sin 3 cos(n€3) cos 4 cos(n , ) - sin 4 sin(n 4 )}J (C-37)4 4 4

The convergence improving procedure of Appendix B may be

applied through the use of the series in Eqs. (C-20) and

(C-24).
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APPENDIX D

PROPERTIES OF SOLUTIONS TO BESSEL'S EQUATION

1. Introduction

In the present analysis, frequent use of various Bessel

functions (solutions to Bessel's equation) is made and, thus,

for convenience, pertinent properties are developed and sum-

marized here.

2. Orthogonality

Bessel's equation is

Ix fn(Xx)} + x2 - f (Xx) 0

where fn is any solution. Consider two solutions Bn (q x) and

Z (y X) of

1 d-I x d Bn(XqX)} + 2_ 2

xd ax d q q x (Xx = 0 (-a

and

x d Z(Y x) + 2 -2 m21  X) = 0 (D-lb)

x _ dx p 2 M -~~(px

Multiply Eq. (D-la) by x Z m(yp x) and Eq. (D-lb) by x B n( qX)

to obtain
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Zm(+ -X2) x Zm(Y(x) Bn(X X) =0

(D-2a)

and

B ( X) X + 2 - )x Z(y x) B n( x) = 0nq dx dx Zm p p 2 m p n qx
(D-2b)

Subtract Eq. (D-2b) from Eq. (D-2a) and integrate over (a,b):

fb[Zm '(x L Bn  - n x X Zm)] dx

-B -( ) x - d
x=a

= b[(y 2A 2) + L(n2_m2)]x ZmB dx (D-3)

l'p q x 2 m n
x=a

The left side of Eq. (D-3), after one integration by parts,

reduces to

Tb[Zm'(x ! B - Bn 'Ld(x d dx

x~ x dx n) B x d-x- jd
x~a

x FZ !LB - xB d 1 b
Lmdx n n dx mjx=a

- b ( Bn ) (j Zm) - x( Zm) (! Bn ) dx

x=a

- [XZ m  Bn - x Bn Zx dxx~a
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so that one may write

(-y 2_x2 ) lbxZ Bn dx + (n 2-m 2) j Z B dx

x-a x-a

I z ! B - B dLz 1b(D4
- Lx~m dx n n (D-4)a

Eq. (D-4) serves as the basis for determination of various

useful properties of solutions to Bessel's equation. These

properties are developed in turn below. When m=n, Eq. (D-4)

reduces to

( 2 _-x2) [b z(y x) B (p x) dxp q j X np n q
x=a

db
q - B q YX) (D-Z5)x

lx(Zn(ypx) ad' Bn(Aqx) - B (A 'dx nCD-5)~

Observe that:

xZ n(Y px) B n(A qx) dx = 0 (D-6)

x=a

if Y 2 A 2 and if the following is true:
p q

!y ) B ( )-B (]x)b 0 (D-7)
[xZ~px dx n qx n qx Zn(Ypx) Jx
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I

Z and B can be the same solution to Bessel's equation orn n

different solutions; e.g., Jn' Nn' or combinations of these.

If the term within the braces of Eq. (D-7) is zero at both a

and b, or one is zero at a and the other at b, the condition

is satisfied.

Another condition which leads to similar results is

d Zn + Zn = 0 (D-8a)
x n

xdB = 0 (D-8b)
dx n n

at x=a and at x=b as can be seen from the following simplifi-

cation of the left-hand side of Eq.(D-7) subject to Eq. (D-6):

Z n (Yp b)[-B n (X q b)] - Bn (X qb)[Z n (y pb)]

- Sn(Ypa)[-Bn (Xqa)] - Bn (Aqa)[Zn (Ya)]]l = 0 (D-9)

It is worth noting that Eq.(D-9) follows from Eq.(D-8) also

in the special case that Zn = Bn (the eigenvalues are main-

tained distinct).

If Eq. (D-la) is replaced by the zero eigenvalue equation

below:

1d x Rn(X) n R x  0

and the preceding procedure is repeated, one arrives at
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y2 x Zn(ypx) RnX) dx

x=a

= (Zn (Yx) j Rn(x) -R(x) d Zn(YpX)JJ (D-10)

which shows that the solution Rn (x) for the zero eigenvalue

exhibits the same property as those associated with non-zero

eigenvalues.

3. Normalization

It Bessel's equation is multiplied by 2x
2  fdxTfn (Xx ) ,

one obtains

2x d f -(x !f ) + 2(X2 X2 _n 2)- f f= 0
a~x n dx dx n dx n n

or

dx((x d fn 2) 2 d [f]2] + X22x2 d nfn = D-1

d(R U- n - n TX ~If nI ( X2x TX_ fn fn) =0 (D-11)

By direct differentiation, one obtains

d[x 2 fn] 2 2x2n f+ 2x f2

or

2xf f d x2f2 f2
n dx n = jx n1 - 2x n

which enables one to reduce Eq. (D-ll) to

2X2X f2 = d[ 1-f 2 + X2 d x 2f f 2 n 2 d ff 2 ) (D-12)n= nx] dx n [x n dx n
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Integration of both sides of Eq. (d-12) yields the following

result:

bf (x) dx= 1 rx !fn(X) 2 + 2x2f2(Xx) - n 2f2(>x)
n 2X dx n I n n J x=a

x=a

(D-13)

Another form which is useful in applications follows from use

of the identity (valid for any solution to Bessel's equation):

x !L f (Xx) = n f (Xx) - Ax f (XX)
dx n n n-I-

in Eq. (D-13).

fxf 2 (x) dx = [ f n(Xx) - fn+l (XX) fn-l (X) 1 xa (D-14a)

-x=a

for n#0. When n=0, L- f0 (Xx) = -X fl(AX) and Eq. (D-13) is

reduced to

b x f2(Xx) dx = x f2(AX) + x2 f2(XX) b (D-14b)

x=a

4. Orthogonality of 0p

The function 0p commonly found in problems dealing

with coaxial geometries, is defined by

0 p(x) = N0 (Xpa) J 0 (XpX) - J 0 (pa) N0 (XpX) (D-15)
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where a and b are the inner and outer radii, respectively, of

the coaxial structure and the eigenvalues A are the roots of
p

J0 (Xpa) N0 (X b) - N0 (A pa) J 0 (Apb) = 0 (D-16)

Since (x) is a solution to Bessel's equation, one canP

write from Eq. (D-6)

pq) x Pp( q(X) dx

x=a

=FX CX) - #q(X) - ql) p(X)M
IL IP dx q q dx p a1L x=a

(D-17)

Notice that the right-hand side of Eq. (D-17) is zero at the

upper limit because 0 (b) and 4 (b) are zero due to the con-p

ditions that A and X are the appropriate associated roots.p q

At the lower limit, each P and 0 is identically zero re-p q

gardless of the values of the roots. Hence, clearly Pp and

Pq are orthogonal.

5. Norm of 4

From Eq. (D-14b) we see that for (order) n=0:

bx 2(x) dx=

x=a

1[{X2(N 0(Xpa) J1(~X ) J (X a) N (X X)}2 + X2 x ab
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which, because of the boundary conditions on I(X) at x - a

and x - b, reduces to

b x D( dx =I jx2NGka)J(pXX) - jx(A a)N(Xkx)21

x-a

or

fbx02 W x Ib 2(N0(Xpa)J 1(Xpb) J0i(X a)N (X b)*}2

x-a

-a 2 (N0 (Apa)JI(A pa) - J0 (Xpa)N1 (Apa) ]2].

Since the coefficient of a2 above is in the form of a

Wronskian squared, one has

rb D2 W dx - b-2(N(kpa)J (kpb)- J(i ka)N (X b)] 2 - 2

jx p 2  0 p 1 p 0  a 1 1  pw
2x2

xa p

(D-18)

Another form is

N 2  . 1bx 02(x) dx =x 4_ i.D[( (x)}2 ]b (D-1 9)
N2 p 2 X2 x p X) a

x=a p

6. Orthogonality of a p(x)

The eigenfunction (D p(x) is

d-$P(x) = -XP(N 0 (Xp a)J(X px) - J0 (Xpa)N (Xpx)] (D-20)
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where the A are the roots of Eq. (D-17). Notice that the

boundary conditions on d- W(x) are given by

d xspJ - 0 at x - a,b (D-21)

and

I dr[x O 4- (X2_Lp. (D-22)

from which it may be concluded that

X(J{- OP(x)J + L- Op(x) - 0 at x = ab . (D-23)

Hence, the procedure leading to Eq. (D-9) ensures the

orthogonality of 4- (x).
dxp

If one considers the zero eigenvalue equation and the
1 1

corresponding eigenfunction, 1, the orthogonality of 1 and

d p(x), subject to the weight function x, can be demon-

strated by writing

fb x(.J](d Wpx) dx - 0 (b) - (D (a) (D-24)

xwa

which reduces to, in view of the boundary conditions,

fb x(l op(x)2 dx - E2% p x

x~axm x2x21D25

2 , [No (X a)J (X X) - J (X a)N (X x)] 21 (-25)
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7. Norm of_x

The eigenfunction corresponding to the zero eigenvalue

has the following norm, with respect to the weight function

X,

. dx = In (D-26)

x=a

8. Summary

For convenience, the orthogonality properties and norms

developed in this Appendix are summarized below.

Orthogonality

fb x 0 p (X) q(X)} dx - 0 p # q (D-27)
xwa

x op(x) dx = 0 , 0 (D-28)x=a

Norms

N 2  . fb x2 (x x b 2  ( o(x)12 2
Px P(x) dx 2 -- X 2

x-a 2)ap 7" p

b2"
M b- (N0(Xpa)Jl(Xpb) _ J(X pa)Nl(Xpb) 2 .2 (D-30)

TA
p
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Sfb 2 2 2xa I dx (x) -

= 4~( -Jo (p~) 1  " b)2 (D-31)p d (dx p n

~b F) 2~.- a(D-32)
x-a
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APPENDIX E

DETAILS OF COAXIAL CAVITY CONSTRUCTION

1. Introduction

Two sets of coaxial cavity structures were fabricated in

order to perform the experimental investigations described in

Chapters VII and VIII. The two sets of cavities are function-

ally quite similar but differ greatly in construction detail

and materials. The primary reason for this difference is that

one set is almost twice the diameter of the other and the

smaller set was constructed from the largest, cylindrical,

brass pipe available. Each set consists of two cavity (wave-

guide) sections having identical cross sections, but differ-

ent lengths, plus interchangeable end plates which give the

cavities one- or two-port characteristics. In addition, each

set includes two very thin partitions with centered, circular

apertures (of different sizes) which are used to divide the

cavities into multiple sections. All cavity components are

made of brass in order to achieve boundary conditions of high

electrical conductivity. Following are short physical de-

scriptions of each set of cavities and appropriate construc-

tion details.
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2. Smaller Coaxial Cavity

The geometry and dimensions of the smaller of the two

sets of coaxial cavities are given in Figure E-l and Table

E-1. The cavity sections were cut from a section of approxi-

mately eight inch inner diameter, red brass pipe and were

bored on a lathe to their final inner diameters after the 1/4

inch thick flanges were soldered on each end. As indicated

in Table E-1, the shorter cavity section required a slightly

larger bore to achieve a circular cross section which left it

0.04 cm larger in inner diameter than the other section. In

order to position the inner conductor as near to perfect cen-

ter as possible, the end plates and cavity sections were

aligned by inserting steel pins through precisely positioned

holes drilled in flanges and the end plates. After in-

sertion of the pins, nuts and bolts were used to securely

fasten the adjacent parts together. Use of the available

pieces allowed four different cavity configurations to be

realized:

1. one-section, one-port cavity

2. One-section, two-port cavity

3. Two-section, one-port cavity

4. Two-section, two-port cavity

It should be noted that configurations 3 and 4 have the op-

tions of no partition between the sections or a partition with
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TABLE E-1. DIMENSIONS OF COMPONENTS OF SMALLER SET OF CAVITIES

Component =] (=] [cm] [cm] [m] [cm] (=]

Long Cavity 5
Section 15I095 30.48 21.232 0.635

Short Cavity 8.637 30.48 21.273 0.635
Section
Front 29.84 11.684 0.318
Plate

Rear End 29.84 13.472 0.318
Plate

Partition with 29.80 8.006 0.051
Large Aperture
Partition with 29.80 2.540 0.051
Small Aperture

One-Port Rod 26.799

Two-Port Rod 40.300

Rod Used with 48.939
Partition

TABLE E-2. COMPARISONS OF ADMITTANCES OF TRANSMISSION LINES
WITH DIFFERENT RODS FOR COAXIAL CENTER CONDUCTOR

OD of Inner ID of Outer
Transmission Conductor Conductor Admittance
Line Section (cm] ccm] (mhos]

GenRad 50-Ohm Feed Line
GenRad Canter Rod 0.6205 1.428 0.020000
Nominal -inch Rod 0.6350 1.428 0.020565
-inch Rod - 0.005" 0.6223 1.428 0.020065
-inch Rod + 0.005" 0.6477 1.428 0.021080

Long Cavity Section
GenRad Center Rod 0.6205 21.232 0.004718
Nominal -inch Rod 0.6350 21.232 0.004749
-inch Rod - 0.005" 0.6223 21.232 0.004722
-inch Rod + 0.005" 0.6477 21.232 0.004770

Short Cavity Section
GenRad Center Rod 0.6205 21.273 0.004715
Nominal -inch Rod 0.6350 21.273 0.004746
-inch Rod - 0.005" 0.6223 21.273 0.004719
-inch Rod + 0.005" 0.6477 21.273 0.004773
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one of two aperture sizes. Thus, there are eight possible

cavity variations available from the four basic configurations.

The coaxial outer conductors which were soldered to the

end plates to form feed lines to the cavity are GenRad Type

874, 50-ohm, air line sections. The companion, 50-ohm inner

conductors were used for cavity configurations 1 and 2. These

rods have a diameter of 0.6205 cm (0.2443 inches). The inner

conductors of the two-section cavities were constructed of

circular, brass rod with a diameter of 0.635 ±0.013 cm (0.250

±0.005 inches). The possible variations in the characteris-

tic impedances of the feed lines and the cavity sections is

presented in Table E-2. This change in inner conductor diam-

eter is included in the appropriate calculations. The only

impact would be in matching the 50-ohm load for the two-port

cavity configuration. Comparisons of measured and calculated

results for these cases show no effects.

In order to allow the insertion and movement of probes

designed to sample the field inside the cavity, radial slots,

0.3175 cm (1/8 inch) wide, were cut in each of the end plates.

These slots were designed to be parallel to the direction of

current flow on the end plates and, thus, provide minimum dis-

turbance to the field within the cavity. The orientation of

the slots also served to inhibit the excitation of any higher-

order modes which might be associated with *-directed cur-

rents.
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The use of the brass pipe, the 1/4 inch brass flanges,

and the 1/8 inch brass end plates made these cavity configu-

rations very durable and heavy. It was possible to tighten

the flange bolts very firmly in order to enhance electrical

conductivity at the interfaces. The excellent agreement be-

tween measured and calculated field and admittance values for

the smaller cavities demonstrates that the cavities contain

no electrical abnormalities. Photographs of cavity compo-

nents are presented in Figure E-2.

3. Larger Coaxial Cavity

The geometry and dimensions of the larger set of coaxial

cavities are given in Figure E-3 and Table E-3. The cavity

sections were formed from 0.005 cm (0.020 inch) thick brass

sheets which were rolled into circular cylinders and soldered

to 1/8 inch thick brass flanges which serve to hold the cylin-

ders in shape. The axial seams where the sheet brass ends

join were filled with solder and sanded smooth. Because both

cavity sections were constructed simultaneously, the inner

diameter (average of four measurements) of one section agrees

to within 0.1 cm of the other. The cavity sections and end

plates are joined by the use of alignment pins and bolts pas-

sing through holes in the flanges as was done for the smaller

set of cavities. The inner conductor was constructed from a

3.195 cm (1.258 inch) diameter brass pipe. The outer conduc-
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tor of the feed-line section was constructed from a 10.424 cm

(4.104 inch) inner diameter, brass pipe.

The feed point on the feed line was a GenRad 50-ohm con-

nector mounted on the sedi of the outer conductor with the

center pin of thee connector extending down to the inner con-

ductor of the feed line. The end of the feed line not at-

tached to the cavity was blocked off with a moveable aluminum

plug which served as a shorting plate. Because of the diffi-

culty of fabricating a matched load for the non-standard coax-

ial line, only one-port versions of the large cavities were

constructed. This resulted in two possible cavity configura-

tions:
1. one-section, one-port cavity

2. Two-section, one-port cavity

Two partitions with different aperture sizes were constructed

for use with the two-section cavity. The relevant dimensions

of the larger cavity set are given in Table E-3 and admittan-

ces of different waveguide segments are given in Table E-4.

Slots for field probe insertion were cut into the cavity

end plates as was done for the smaller cavity set. In addi-

tion, an axial slot was cut in the inner conductor to allow

sampling of the interior field along the axial coordinate.

This slot extended well into the feed-line section and would

serve quite well for a slotted line for admittance measure-

ments. The extremely large standing wave ratios caused by
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TABLE E-3. DIMENSIONS OF COMPONENTS OF LARGER SET OF CAVITIES

Cavity z v 6 a T
Component (cm] (cm] (cm] [cm] (cm] (cm] [cm]

Long Cavity 27.318 41.28 35.631 0.159
Section

Short Cavity 18.459 41.28 35.551 0.159
section

End Plate with 41.28 177.01 0.159
Inner Conductor

End Plate with 41.28 105.41 0.159
Outer Conductor

Partition with 41.00 14.813 0.051
Large Aperture
Partition withSall pet 41.00 5.121 0.051Small Aperture

Truncated
Coaxial Center 174.31
Conductor

TABLE E-4. ADMITTANCE OF EACH SECTION OF LARGER
SET OF CAVITIES

OD of Inner ID of Outer
Transmission Conductor Conductor Admittance
Lime Section [cm] [c=] (Mhos]

Feed Line Section 3.195 10.424 0.014094

Lonq Cavity Section 3.195 35.631 0.006911

Short Cavity Section 3.195 35.551 0.006917
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the one-port cavity configuration made such measurements im-

practical.

There was some difficulty in obtaining extremely tight

interfaces between the equally-spaced bolts which hold the

flanges together. During the measurements, C-clamps were

used to tighten these joints although tests made at several

frequencies did not show any significant effect due to adding

the clamps. The agreement between measured and calculated

results on the end plates of the larger cavities, while

generally good to very good, did not attain the almost com-

plete consistency of the end-plate measurements for the

smaller cavity set. The greater difficulty in obtaining very

tight flange junctions is one likely cause for such disagree-

ments. The very good agreement between measured and calcu-

lated data at the surface of the coaxial inner conductor of

the large cavity contributes strong support to the idea that

the impedance mismatch of the one-port cavities makes it

extremely difficult to couple sufficient energy into the

cavity to perform accurate measurements.
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APPENDIX F

DESCRIPTIONS OF ELECTRIC AND MAGNETIC FIELD PROBES

1. introduction

Two types of probes were fabricated in order to sample

the interior field of the coaxial cavities. The electric

field or "charge" probe consists of a short, thin electrical

conductor (in this case, the inner conductor of a short piece

of 0.035 inch semi-rigid coaxial cable) which is oriented nor-

mal to the perfectly-conducting wall of the cavity. The nor-

mal component of the electric field induces a small current

on the conductor which, in turn, creates a potential differ-

ence between the conductor and the cavity wall which is de-

tectable by a network analyzer operating in a vector voltmeter

mode. The magnetic field or "current" probe is composed of a

semi-circular loop of 0.035 inch coax with the outer conductor

grounded to the probe transport at both ends. A short section

of the outer conductor is cut away at the center of the loop

to expose a short piece of the inner conductor. The component

of magnetic field tangential to the cavity wall induces a cur-

rent on the loop and, in turn, creates a potential difference

between the outer and inner conductors of the coaxial loop.

This potential difference is again detected by a network ana-
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lyzer. The basic probe designs have been in use by Professor

R. W. P. King and others for many years. The rest of this ap-

pendix describes the particular probe transport designs used

f or the end plates and the center conductor of the cavities.

2. End-Plate Probes

Front and side views of the electric and magnetic field

probes used to sample the cavity field at the inner surface of

the cavity end plates are presented in Figure F-1. The probes

are mounted on brass transports which have a T-shaped cross

section for insertion into and sliding back and forth in a 1/8

inch (0.3175 cm) wide slot. The bottoms of the probe trans-

ports are designed to be flush with the inside surface of the

end plates. Good electrical contact between the probe trans-

port and the cavity end plate is very important in order to

obtain a valid reading from the network analyzer. It is also

important that the probe transport slide easily in the slot to

facilitate making measurements. These two contradicting re-

quirements add an element of art to the science of probe manu-

facture and use. Adequate pressure on the top of the probe

transport during measurements can ensure a good electrical

contact with the cavity end plate. It is important that the

bottom of the probe transport be flush with the inner surface

of the end plate in order that the probe see no sharp corners

or other discontinuities in its neighborhood.
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H - 1.232
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of Coaxial Cable

Figure F-la. Orthogonal Views of Electric Field Probe for
End Plates
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. 7 Brass Probe Transport

0. 0 8 0 8

OSM Connector

~ 0.035" Semi-Rigid
Coaxial Cable

ICoax Center
4 .Conductor
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Figure F-lb. Orthogonal Views of Magnetic Field Probe for
End Plates
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Since the end plates on the small cavities are 1/8 inch

thick and those of the large cavities are 1/16 inch thick, a

small, flat, 1/16 inch thick clip is used to adjust the depth

of the probe transport to the thickness of the thinner end

plates. A photograph of the two probes (with a quarter for

size comparison) is shown in Figure F-2.

3. Center Conductor Probes

Drawings of the electric and magnetic field probes used

to sample the cavity field at the outer surface of the coaxial

inner conductor are presented in Figure F-3. The probes are

mounted on 1/8 inch-thick, brass guides which are in turn

mounted on thin, brass plates. The plates have been contoured

to fit the outside of a brass, cylindrical probe transport and

make a snug fit with the inner surface of the brass pipe which

forms the coaxial center conductor. The thin plates are se-

cured to the sides of the cylindrical probe transports by min-

iature screws. The coaxial lead from each probe passes into a

hole in the side of the cylinder and emerges from the hole at

one of the flat ends. The probe transport slides easily in-

side the brass pipe because of thick, Teflon disks which are

fastened to each end of the brass cylinder. The disks are

slightly larger than the cylinders and make the sliding con-

tact with the inner walls of the pipe. The thin brass plates

make the primary electrical contact with the brass pipe. The
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0.838 ' - 3 .277----- 10.838 All dimensions

are in centimeters

2.540aa

3.200 
0.546

0.15 912.012 0.035" Semi-Rigid 0__56
Coaxial Cable H0.356
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Figure F-3a. Orthogonal Views of Electric Field Probe for
Coaxial Center Conductor

5" Teflon Washers

0.533 K

Stove Bolt

Brass Cylinder 0.030" Brass Sheet 0.254
=0.025 J*- Curved to fit Top

of Brass Cylinder

_ /

Figure F-3b. Orthogonal Views of Magnetic Field Probe for
Coaxial Center Conductor
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tops of the brass guides are designed to be flush with the

outer surface of the brass pipe.

The probe transports are positioned by moving a long,

thin, brass tube whose end has been threaded to receive a

bolt which passes through the center of the brass cylinder.

The flexible probe lead enters a hole in the side of the thin

tube (just behind the threaded section), passes through the

inside of the tube, and exits at the far end of the tube. A

marker was placed near the far end of the tube for use in re-

cording the position of the probe inside the cavity. Two

photographs of the magnetic and electric field probes are

presented in Figure F-2.
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